EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Method of Weighted Residuals and Variational Principles

Download or read book The Method of Weighted Residuals and Variational Principles written by Bruce A. Finlayson and published by SIAM. This book was released on 2013-12-30 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.

Book The Method of Weighted Residuals and Variational Principles  with Application in Fluid Mechanics  Heat and Mass Transfer

Download or read book The Method of Weighted Residuals and Variational Principles with Application in Fluid Mechanics Heat and Mass Transfer written by Courtney Finlayson and published by Elsevier. This book was released on 1972-08-22 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Method of Weighted Residuals and Variational Principles, with Application in Fluid Mechanics, Heat and Mass Transfer

Book The Method of Weighted Residuals and Variational Principles

Download or read book The Method of Weighted Residuals and Variational Principles written by B. Finlayson and published by . This book was released on 1972 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Numerical and Semi Analytical Methods for Differential Equations

Download or read book Advanced Numerical and Semi Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-03-20 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Book Introduction to Numerical Methods for Variational Problems

Download or read book Introduction to Numerical Methods for Variational Problems written by Hans Petter Langtangen and published by Springer Nature. This book was released on 2019-09-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.

Book Weighted Residual Methods

Download or read book Weighted Residual Methods written by Mohammad Hatami and published by Academic Press. This book was released on 2017-11-07 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weighted Residual Methods: Principles, Modifications and Applications introduces a range of WRMs, providing examples that show how they can be used to solve complex engineering problems with greater accuracy and computational efficiency. Examples focus on non-linear problems, including the motion of a spherical particle, nanofluid flow and heat transfer, magnetohydrodynamic flow and heat transfer, and micropolar fluid flow and heat transfer. These are important factors in understanding processes, such as filtration, combustion, air and water pollution and micro contamination. In addition to the applications, the reader is provided with full derivations of equations and summaries of important field research. Includes the basic code for each method, giving readers a head start in using WRMs for computational modeling Provides full derivations of important governing equations in a number of emerging fields of study Offers numerous, detailed examples of a range of applications in heat transfer, nanotechnology, medicine, and more

Book The Finite Element Method

Download or read book The Finite Element Method written by Zhu and published by John Wiley & Sons. This book was released on 2018-03-12 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.

Book Variational and Extremum Principles in Macroscopic Systems

Download or read book Variational and Extremum Principles in Macroscopic Systems written by Stanislaw Sieniutycz and published by Elsevier. This book was released on 2010-07-07 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin’s maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. A unique multidisciplinary synthesis of variational and extremum principles in theory and application A comprehensive review of current and past achievements in variational formulations for macroscopic processes Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy

Book The Finite Element Method

Download or read book The Finite Element Method written by Douglas H. Norrie and published by Academic Press. This book was released on 2014-05-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method: Fundamentals and Applications demonstrates the generality of the finite element method by providing a unified treatment of fundamentals and a broad coverage of applications. Topics covered include field problems and their approximate solutions; the variational method based on the Hilbert space; and the Ritz finite element method. Finite element applications in solid and structural mechanics are also discussed. Comprised of 16 chapters, this book begins with an introduction to the formulation and classification of physical problems, followed by a review of field or continuum problems and their approximate solutions by the method of trial functions. It is shown that the finite element method is a subclass of the method of trial functions and that a finite element formulation can, in principle, be developed for most trial function procedures. Variational and residual trial function methods are considered in some detail and their convergence is examined. After discussing the calculus of variations, both in classical and Hilbert space form, the fundamentals of the finite element method are analyzed. The variational approach is illustrated by outlining the Ritz finite element method. The application of the finite element method to solid and structural mechanics is also considered. This monograph will appeal to undergraduate and graduate students, engineers, scientists, and applied mathematicians.

Book Foundations of Applied Mathematics

Download or read book Foundations of Applied Mathematics written by Michael D. Greenberg and published by Courier Corporation. This book was released on 2013-01-01 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A longtime classic text in applied mathematics, this volume also serves as a reference for undergraduate and graduate students of engineering. Topics include real variable theory, complex variables, linear analysis, partial and ordinary differential equations, and other subjects. Answers to selected exercises are provided, along with Fourier and Laplace transformation tables and useful formulas. 1978 edition"--

Book TEXTBOOK OF FINITE ELEMENT ANALYSIS

Download or read book TEXTBOOK OF FINITE ELEMENT ANALYSIS written by P. SESHU and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.

Book Proceedings of the Army Numerical and Computers Analysis Conference

Download or read book Proceedings of the Army Numerical and Computers Analysis Conference written by and published by . This book was released on 1982 with total page 1272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 1982 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Mathematics of Finite Elements and Applications

Download or read book The Mathematics of Finite Elements and Applications written by J. R. Whiteman and published by Academic Press. This book was released on 2014-05-10 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Finite Elements and Applications provides information pertinent to the mathematics of finite elements, applications, algorithms, and computational techniques. This book discusses the developments in the mathematics of finite elements. Organized into 32 chapters, this book begins with an overview of the basis of the finite element process as a general approximation tool. This text then examines the methods for obtaining bounds on the errors in finite element solutions to two-dimensional elliptic boundary value problems defined on simply connected polygonal regions. Other chapters consider the practical implementation of the Galerkin and the Rayleigh–Ritz methods to equations of importance to physics and engineering. This book discusses as well a fundamental investigation into the problem of convergence in the finite element method. The final chapter deals with an algorithm that is applicable to the analysis of arbitrary plane stress or plane strain configurations. This book is a valuable resource for numerical analysts, mathematical physicist, applied mathematicians, computer scientists, and engineers.

Book Transport Processes in Chemically Reacting Flow Systems

Download or read book Transport Processes in Chemically Reacting Flow Systems written by Daniel E. Rosner and published by Butterworth-Heinemann. This book was released on 2013-10-22 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport Processes in Chemically Reacting Flow Systems discusses the role, in chemically reacting flow systems, of transport processes—particularly the transport of momentum, energy, and (chemical species) mass in fluids (gases and liquids). The principles developed and often illustrated here for combustion systems are important not only for the rational design and development of engineering equipment (e.g., chemical reactors, heat exchangers, mass exchangers) but also for scientific research involving coupled transport processes and chemical reaction in flow systems. The book begins with an introduction to transport processes in chemically reactive systems. Separate chapters cover momentum, energy, and mass transport. These chapters develop, state, and exploit useful quantitative ""analogies"" between these transport phenomena, including interrelationships that remain valid even in the presence of homogeneous or heterogeneous chemical reactions. A separate chapter covers the use of transport theory in the systematization and generalization of experimental data on chemically reacting systems. The principles and methods discussed are then applied to the preliminary design of a heat exchanger for extracting power from the products of combustion in a stationary (fossil-fuel-fired) power plant. The book has been written in such a way as to be accessible to students and practicing scientists whose background has until now been confined to physical chemistry, classical physics, and/or applied mathematics.

Book Engineering Analysis with ANSYS Software

Download or read book Engineering Analysis with ANSYS Software written by Tadeusz Stolarski and published by Elsevier. This book was released on 2011-02-24 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: For all engineers and students coming to finite element analysis or to ANSYS software for the first time, this powerful hands-on guide develops a detailed and confident understanding of using ANSYS's powerful engineering analysis tools. The best way to learn complex systems is by means of hands-on experience. With an innovative and clear tutorial based approach, this powerful book provides readers with a comprehensive introduction to all of the fundamental areas of engineering analysis they are likely to require either as part of their studies or in getting up to speed fast with the use of ANSYS software in working life. Opening with an introduction to the principles of the finite element method, the book then presents an overview of ANSYS technologies before moving on to cover key applications areas in detail. Key topics covered: Introduction to the finite element method Getting started with ANSYS software stress analysis dynamics of machines fluid dynamics problems thermo mechanics contact and surface mechanics exercises, tutorials, worked examples With its detailed step-by-step explanations, extensive worked examples and sample problems, this book will develop the reader's understanding of FEA and their ability to use ANSYS's software tools to solve their own particular analysis problems, not just the ones set in the book. * Develops a detailed understanding of finite element analysis and the use of ANSYS software by example * Develops a detailed understanding of finite element analysis and the use of ANSYS software by example * Exclusively structured around the market leading ANSYS software, with detailed and clear step-by-step instruction, worked examples, and detailed, screen-by-screen illustrative problems to reinforce learning

Book Hamilton   s Principle in Continuum Mechanics

Download or read book Hamilton s Principle in Continuum Mechanics written by Anthony Bedford and published by Springer Nature. This book was released on 2021-12-14 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces.