Download or read book Analysis of Variance Design and Regression written by Ronald Christensen and published by CRC Press. This book was released on 1996-06-01 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.
Download or read book Data Analysis Using the Method of Least Squares written by John Wolberg and published by Springer Science & Business Media. This book was released on 2006-02-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods
Download or read book The Total Least Squares Problem written by Sabine Van Huffel and published by SIAM. This book was released on 1991-01-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.
Download or read book Applied Regression Analysis written by John O. Rawlings and published by Springer Science & Business Media. This book was released on 2006-03-31 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to statistical methods and a thoeretical linear models course. Applied Regression Analysis emphasizes the concepts and the analysis of data sets. It provides a review of the key concepts in simple linear regression, matrix operations, and multiple regression. Methods and criteria for selecting regression variables and geometric interpretations are discussed. Polynomial, trigonometric, analysis of variance, nonlinear, time series, logistic, random effects, and mixed effects models are also discussed. Detailed case studies and exercises based on real data sets are used to reinforce the concepts. The data sets used in the book are available on the Internet.
Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Download or read book Applied Linear Regression written by Sanford Weisberg and published by John Wiley & Sons. This book was released on 2013-06-07 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Download or read book Applied Analysis of Variance in Behavioral Science written by Lynne Edwards and published by CRC Press. This book was released on 1993-06-16 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference devoted to the discussion of analysis of variance (ANOVA) techniques. It presents ANOVA as a research design, a collection of statistical models, an analysis model, and an arithmetic summary of data. Discussion focuses primarily on univariate data, but multivariate generalizations are to
Download or read book Econometric Methods with Applications in Business and Economics written by Christiaan Heij and published by OUP Oxford. This book was released on 2004-03-25 with total page 1132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays applied work in business and economics requires a solid understanding of econometric methods to support decision-making. Combining a solid exposition of econometric methods with an application-oriented approach, this rigorous textbook provides students with a working understanding and hands-on experience of current econometrics. Taking a 'learning by doing' approach, it covers basic econometric methods (statistics, simple and multiple regression, nonlinear regression, maximum likelihood, and generalized method of moments), and addresses the creative process of model building with due attention to diagnostic testing and model improvement. Its last part is devoted to two major application areas: the econometrics of choice data (logit and probit, multinomial and ordered choice, truncated and censored data, and duration data) and the econometrics of time series data (univariate time series, trends, volatility, vector autoregressions, and a brief discussion of SUR models, panel data, and simultaneous equations). · Real-world text examples and practical exercise questions stimulate active learning and show how econometrics can solve practical questions in modern business and economic management. · Focuses on the core of econometrics, regression, and covers two major advanced topics, choice data with applications in marketing and micro-economics, and time series data with applications in finance and macro-economics. · Learning-support features include concise, manageable sections of text, frequent cross-references to related and background material, summaries, computational schemes, keyword lists, suggested further reading, exercise sets, and online data sets and solutions. · Derivations and theory exercises are clearly marked for students in advanced courses. This textbook is perfect for advanced undergraduate students, new graduate students, and applied researchers in econometrics, business, and economics, and for researchers in other fields that draw on modern applied econometrics.
Download or read book OpenIntro Statistics written by David Diez and published by . This book was released on 2015-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.
Download or read book Understanding Applying Basic Statistical Methods Using R written by Morgan Holland & and published by Scientific e-Resources. This book was released on 2019-07-04 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and Applying Basic Statistical Methods Using R remarkably conquers any hindrance between propels in the measurable writing and methods routinely utilized by non-analysts. Giving a theoretical premise to understanding the relative benefits and uses of these methods, the book highlights current bits of knowledge and advances applicable to fundamental systems regarding managing non-ordinariness, exceptions, heteroscedasticity (unequal changes), and curvature. Including a manual for R, the book utilizes R programming to investigate starting factual ideas and standard methods for managing known issues related with exemplary procedures. Altogether classroom tried, the book incorporates segments that attention on either R programming or computational points of interest to enable the reader to wind up noticeably familiar with fundamental ideas and standards basic regarding understanding and applying the numerous methods as of now accessible.
Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Download or read book Linear Models written by Brenton R. Clarke and published by John Wiley & Sons. This book was released on 2008-09-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful approach to the analysis of variance in the study of linear models Linear Models explores the theory of linear models and the dynamic relationships that these models have with Analysis of Variance (ANOVA), experimental design, and random and mixed-model effects. This one-of-a-kind book emphasizes an approach that clearly explains the distribution theory of linear models and experimental design starting from basic mathematical concepts in linear algebra. The author begins with a presentation of the classic fixed-effects linear model and goes on to illustrate eight common linear models, along with the value of their use in statistics. From this foundation, subsequent chapters introduce concepts pertaining to the linear model, starting with vector space theory and the theory of least-squares estimation. An outline of the Helmert matrix is also presented, along with a thorough explanation of how the ANOVA is created in both typical two-way and higher layout designs, ultimately revealing the distribution theory. Other important topics covered include: Vector space theory The theory of least squares estimation Gauss-Markov theorem Kronecker products Diagnostic and robust methods for linear models Likelihood approaches to estimation A discussion of Bayesian theory is also included for purposes of comparison and contrast, and numerous illustrative exercises assist the reader with uncovering the nature of the models, using both classic and new data sets. Requiring only a working knowledge of basic probability and statistical inference, Linear Models is a valuable book for courses on linear models at the upper-undergraduate and graduate levels. It is also an excellent reference for practitioners who use linear models to conduct research in the fields of econometrics, psychology, sociology, biology, and agriculture.
Download or read book Variance Components written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.
Download or read book The Analysis of Variance written by Henry Scheffé and published by John Wiley & Sons. This book was released on 1999-03-05 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1959, this classic volume has had a major impact on generations of statisticians. Newly issued in the Wiley Classics Series, the book examines the basic theory of analysis of variance by considering several different mathematical models. Part I looks at the theory of fixed-effects models with independent observations of equal variance, while Part II begins to explore the analysis of variance in the case of other models.
Download or read book The Reviewer s Guide to Quantitative Methods in the Social Sciences written by Gregory R. Hancock and published by Routledge. This book was released on 2010-04-26 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for reviewers of research manuscripts and proposals in the social and behavioral sciences, and beyond, this title includes chapters that address traditional and emerging quantitative methods of data analysis.
Download or read book Applied Regression and ANOVA Using SAS written by Patricia F. Moodie and published by CRC Press. This book was released on 2022-06-07 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Regression and ANOVA Using SAS® has been written specifically for non-statisticians and applied statisticians who are primarily interested in what their data are revealing. Interpretation of results are key throughout this intermediate-level applied statistics book. The authors introduce each method by discussing its characteristic features, reasons for its use, and its underlying assumptions. They then guide readers in applying each method by suggesting a step-by-step approach while providing annotated SAS programs to implement these steps. Those unfamiliar with SAS software will find this book helpful as SAS programming basics are covered in the first chapter. Subsequent chapters give programming details on a need-to-know basis. Experienced as well as entry-level SAS users will find the book useful in applying linear regression and ANOVA methods, as explanations of SAS statements and options chosen for specific methods are provided. Features: •Statistical concepts presented in words without matrix algebra and calculus •Numerous SAS programs, including examples which require minimum programming effort to produce high resolution publication-ready graphics •Practical advice on interpreting results in light of relatively recent views on threshold p-values, multiple testing, simultaneous confidence intervals, confounding adjustment, bootstrapping, and predictor variable selection •Suggestions of alternative approaches when a method’s ideal inference conditions are unreasonable for one’s data This book is invaluable for non-statisticians and applied statisticians who analyze and interpret real-world data. It could be used in a graduate level course for non-statistical disciplines as well as in an applied undergraduate course in statistics or biostatistics.