Download or read book The Mathematical Theory of Bridge 134 Probability Tables Their Uses Simple Formulas Applications and about 4000 Probabilities written by Emile Borel and published by Master Point Press. This book was released on 2017-11-20 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: 134 Probability tables, their uses, simple formulas, applications & 4000 probabilities Originally published in 1940, and revised in 1954, this classic work on mathematics and probability as applied to Bridge first appeared in English translation in 1974, but has been unavailable for many years. This new edition corrects numerical errors found in earlier texts; it revises the previous English translation where needed and corrects a number of textual and typographical errors in the 1974 edition. Tables have been included again in the text, as they were in the original edition. The chapter on Contract and Plafond scoring has been retained as continuing to serve its intended purpose. The chapters on shuffling, although no longer applicable to Duplicate Bridge, are included for the benefit of those interested in the mathematics of all card games. All, it is hoped, without too many new errors being introduced.
Download or read book A Mathematical Bridge written by Stephen Fletcher Hewson and published by World Scientific. This book was released on 2009 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although higher mathematics is beautiful, natural and interconnected, to the uninitiated it can feel like an arbitrary mass of disconnected technical definitions, symbols, theorems and methods. An intellectual gulf needs to be crossed before a true, deep appreciation of mathematics can develop. This book bridges this mathematical gap. It focuses on the process of discovery as much as the content, leading the reader to a clear, intuitive understanding of how and why mathematics exists in the way it does.The narrative does not evolve along traditional subject lines: each topic develops from its simplest, intuitive starting point; complexity develops naturally via questions and extensions. Throughout, the book includes levels of explanation, discussion and passion rarely seen in traditional textbooks. The choice of material is similarly rich, ranging from number theory and the nature of mathematical thought to quantum mechanics and the history of mathematics. It rounds off with a selection of thought-provoking and stimulating exercises for the reader.
Download or read book Mathematical Bridges written by Titu Andreescu and published by Birkhäuser. This book was released on 2017-02-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building bridges between classical results and contemporary nonstandard problems, this highly relevant work embraces important topics in analysis and algebra from a problem-solving perspective. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and motivated mathematics students from high school juniors to college seniors will find the work a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students with an interest in mathematics competitions must have this book in their personal libraries.
Download or read book Bridge to Abstract Mathematics written by Ralph W. Oberste-Vorth and published by American Mathematical Society. This book was released on 2020-02-20 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and definitions rather than theories that must be tested, revised, and retested. Readers will learn how to read mathematics beyond popular computational calculus courses. Moreover, readers will learn how to construct their own proofs. The book is intended as the primary text for an introductory course in proving theorems, as well as for self-study or as a reference. Throughout the text, some pieces (usually proofs) are left as exercises. Part V gives hints to help students find good approaches to the exercises. Part I introduces the language of mathematics and the methods of proof. The mathematical content of Parts II through IV were chosen so as not to seriously overlap the standard mathematics major. In Part II, students study sets, functions, equivalence and order relations, and cardinality. Part III concerns algebra. The goal is to prove that the real numbers form the unique, up to isomorphism, ordered field with the least upper bound. In the process, we construct the real numbers starting with the natural numbers. Students will be prepared for an abstract linear algebra or modern algebra course. Part IV studies analysis. Continuity and differentiation are considered in the context of time scales (nonempty, closed subsets of the real numbers). Students will be prepared for advanced calculus and general topology courses. There is a lot of room for instructors to skip and choose topics from among those that are presented.
Download or read book Mathematical Models for Suspension Bridges written by Filippo Gazzola and published by Springer. This book was released on 2015-05-29 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
Download or read book Bridge to Higher Mathematics written by Sam Vandervelde and published by Lulu.com. This book was released on 2010 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging math textbook is designed to equip students who have completed a standard high school math curriculum with the tools and techniques that they will need to succeed in upper level math courses. Topics covered include logic and set theory, proof techniques, number theory, counting, induction, relations, functions, and cardinality.
Download or read book A Bridge to Higher Mathematics written by Valentin Deaconu and published by CRC Press. This book was released on 2016-12-19 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
Download or read book An Introduction to the Mathematical Theory of Waves written by Roger Knobel and published by American Mathematical Soc.. This book was released on 2000 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.
Download or read book Bridges to Infinity written by Michael Guillen and published by Tarcher. This book was released on 1983 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an endlessly fascinating journey through a mathematician's looking glass.
Download or read book The Knot Book written by Colin Conrad Adams and published by American Mathematical Soc.. This book was released on 2004 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Download or read book Building Bridges written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2010-05-28 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete mathematics and theoretical computer science are closely linked research areas with strong impacts on applications and various other scientific disciplines. Both fields deeply cross fertilize each other. One of the persons who particularly contributed to building bridges between these and many other areas is László Lovász, a scholar whose outstanding scientific work has defined and shaped many research directions in the last 40 years. A number of friends and colleagues, all top authorities in their fields of expertise and all invited plenary speakers at one of two conferences in August 2008 in Hungary, both celebrating Lovász’s 60th birthday, have contributed their latest research papers to this volume. This collection of articles offers an excellent view on the state of combinatorics and related topics and will be of interest for experienced specialists as well as young researchers.
Download or read book Moonshine beyond the Monster written by Terry Gannon and published by Cambridge University Press. This book was released on 2023-07-31 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Mathematical Theory of Elasticity written by Richard B. Hetnarski and published by CRC Press. This book was released on 2016-04-19 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through its inclusion of specific applications, The Mathematical Theory of Elasticity, Second Edition continues to provide a bridge between the theory and applications of elasticity. It presents classical as well as more recent results, including those obtained by the authors and their colleagues. Revised and improved, this edition incorporates add
Download or read book The Mathematical Theory of Vibration in Suspension Bridges written by Friedrich Bleich and published by . This book was released on 1950 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Measurement Uncertainty written by Simona Salicone and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.
Download or read book Theories Sites Toposes written by Olivia Caramello and published by Oxford University Press. This book was released on 2018 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to Grothendieck, the notion of topos is "the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures". It is what he had "conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an "essence" which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things". The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.
Download or read book Quantum Mathematical Physics written by Felix Finster and published by Birkhäuser. This book was released on 2016-02-24 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.