Download or read book Mastering LLM Applications with LangChain and Hugging Face written by Hunaidkhan Pathan and published by BPB Publications. This book was released on 2024-09-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: DESCRIPTION The book is all about the basics of NLP, generative AI, and their specific component LLM. In this book, we have provided conceptual knowledge about different terminologies and concepts of NLP and NLG with practical hands-on. This comprehensive book offers a deep dive into the world of NLP and LLMs. Starting with the fundamentals of Python programming and code editors, the book gradually introduces NLP concepts, including text preprocessing, word embeddings, and transformer architectures. You will explore the architecture and capabilities of popular models like GPT-3 and BERT. The book also covers practical aspects of LLM usage for RAG applications using frameworks like LangChain and Hugging Face and deploying them in real world applications. With a focus on both theoretical knowledge and hands-on experience, this book is ideal for anyone looking to master the art of NLP and LLMs. The book also contains AWS Cloud deployment, which will help readers step into the world of cloud computing. As the book contains both theoretical and practical approaches, it will help the readers to gain confidence in the deployment of LLMs for any use cases, as well as get acquainted with the required generative AI knowledge to crack the interviews. KEY FEATURES ● Covers Python basics, NLP concepts, and terminologies, including LLM and RAG concepts. ● Provides exposure to LangChain, Hugging Face ecosystem, and chatbot creation using custom data. ● Guides on integrating chatbots with real-time applications and deploying them on AWS Cloud. WHAT YOU WILL LEARN ● Basics of Python, which contains Python concepts, installation, and code editors. ● Foundation of NLP and generative AI concepts and different terminologies being used in NLP and generative AI domain. ● LLMs and their importance in the cutting edge of AI. ● Creating chatbots using custom data using open source LLMs without spending a single penny. ● Integration of chatbots with real-world applications like Telegram. WHO THIS BOOK IS FOR This book is ideal for beginners and freshers entering the AI or ML field, as well as those at an intermediate level looking to deepen their understanding of generative AI, LLMs, and cloud deployment. TABLE OF CONTENTS 1. Introduction to Python and Code Editors 2. Installation of Python, Required Packages, and Code Editors 3. Ways to Run Python Scripts 4. Introduction to NLP and its Concepts 5. Introduction to Large Language Models 6. Introduction of LangChain, Usage and Importance 7. Introduction of Hugging Face, its Usage and Importance 8. Creating Chatbots Using Custom Data with LangChain and Hugging Face Hub 9. Hyperparameter Tuning and Fine Tuning Pre-Trained Models 10. Integrating LLMs into Real-World Applications–Case Studies 11. Deploying LLMs in Cloud Environments for Scalability 12. Future Directions: Advances in LLMs and Beyond Appendix A: Useful Tips for Efficient LLM Experimentation Appendix B: Resources and References
Download or read book LangChain LlamaIndex A Practical Guide written by Anand Vemula and published by Anand Vemula. This book was released on with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: "LangChain & LlamaIndex: A Practical Guide" is an insightful exploration into the world of blockchain technology and its applications within the emerging cryptocurrency market. Authored by leading experts in the field, this book offers a comprehensive overview of LangChain, a cutting-edge blockchain platform, and LlamaIndex, a unique cryptocurrency index. Readers are taken on a journey through the intricacies of LangChain, learning about its architecture, functionality, and potential uses in various industries. From its secure decentralized network to its smart contract capabilities, the book provides clear explanations and practical examples to help readers grasp the fundamentals of this innovative technology. In parallel, the book delves into the fascinating realm of the LlamaIndex, a benchmark for tracking the performance of cryptocurrencies. Through detailed analysis and case studies, readers gain valuable insights into how the LlamaIndex is constructed, its methodology for selecting and weighting cryptocurrencies, and its significance in the broader financial landscape. More than just a theoretical exploration, "LangChain & LlamaIndex: A Practical Guide" equips readers with the knowledge and tools they need to navigate the rapidly evolving world of blockchain and cryptocurrencies. Whether you're a novice looking to understand the basics or a seasoned investor seeking to stay ahead of the curve, this book offers invaluable guidance for leveraging LangChain and interpreting the LlamaIndex to make informed decisions in the digital asset space. With its accessible language, real-world examples, and actionable advice, this book is a must-read for anyone interested in unlocking the potential of blockchain technology and cryptocurrency investing.
Download or read book Generative AI with LangChain written by Ben Auffarth and published by Packt Publishing Ltd. This book was released on 2023-12-22 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2024 Edition – Get to grips with the LangChain framework to develop production-ready applications, including agents and personal assistants. The 2024 edition features updated code examples and an improved GitHub repository. Purchase of the print or Kindle book includes a free PDF eBook. Key Features Learn how to leverage LangChain to work around LLMs’ inherent weaknesses Delve into LLMs with LangChain and explore their fundamentals, ethical dimensions, and application challenges Get better at using ChatGPT and GPT models, from heuristics and training to scalable deployment, empowering you to transform ideas into reality Book DescriptionChatGPT and the GPT models by OpenAI have brought about a revolution not only in how we write and research but also in how we can process information. This book discusses the functioning, capabilities, and limitations of LLMs underlying chat systems, including ChatGPT and Gemini. It demonstrates, in a series of practical examples, how to use the LangChain framework to build production-ready and responsive LLM applications for tasks ranging from customer support to software development assistance and data analysis – illustrating the expansive utility of LLMs in real-world applications. Unlock the full potential of LLMs within your projects as you navigate through guidance on fine-tuning, prompt engineering, and best practices for deployment and monitoring in production environments. Whether you're building creative writing tools, developing sophisticated chatbots, or crafting cutting-edge software development aids, this book will be your roadmap to mastering the transformative power of generative AI with confidence and creativity.What you will learn Create LLM apps with LangChain, like question-answering systems and chatbots Understand transformer models and attention mechanisms Automate data analysis and visualization using pandas and Python Grasp prompt engineering to improve performance Fine-tune LLMs and get to know the tools to unleash their power Deploy LLMs as a service with LangChain and apply evaluation strategies Privately interact with documents using open-source LLMs to prevent data leaks Who this book is for The book is for developers, researchers, and anyone interested in learning more about LangChain. Whether you are a beginner or an experienced developer, this book will serve as a valuable resource if you want to get the most out of LLMs using LangChain. Basic knowledge of Python is a prerequisite, while prior exposure to machine learning will help you follow along more easily.
Download or read book Building LLM Powered Applications written by Valentina Alto and published by Packt Publishing Ltd. This book was released on 2024-05-22 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications Key Features Embed LLMs into real-world applications Use LangChain to orchestrate LLMs and their components within applications Grasp basic and advanced techniques of prompt engineering Book DescriptionBuilding LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer, ultimately paving the way for the emergence of large foundation models (LFMs) that extend the boundaries of AI capabilities. The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain, we guide you through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio. Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.What you will learn Explore the core components of LLM architecture, including encoder-decoder blocks and embeddings Understand the unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLM Use AI orchestrators like LangChain, with Streamlit for the frontend Get familiar with LLM components such as memory, prompts, and tools Learn how to use non-parametric knowledge and vector databases Understand the implications of LFMs for AI research and industry applications Customize your LLMs with fine tuning Learn about the ethical implications of LLM-powered applications Who this book is for Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics. We don’t assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.
Download or read book Mastering Large Language Models written by Sanket Subhash Khandare and published by BPB Publications. This book was released on 2024-03-12 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact
Download or read book Introduction to Python and Large Language Models written by Dilyan Grigorov and published by Springer Nature. This book was released on with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Large Language Models written by Uday Kamath and published by Springer Nature. This book was released on 2024 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs -- their intricate architecture, underlying algorithms, and ethical considerations -- require thorough exploration, creating a need for a comprehensive book on this subject. This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios. Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models. This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.
Download or read book LangChain in your Pocket written by Mehul Gupta and published by Mehul Gupta. This book was released on 2024-01-28 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the full potential of Generative AI with "LangChain in your Pocket", a hands-on guide that takes you through the robust LangChain framework. This book provides a step-by-step journey into creating powerful applications, from Auto-SQL and NER to custom Agents and Chains, integrating Memory, OutputParsers, RAG for Q&A, Few-Shot Classification, Evaluators, Autonomous AI agents, Advanced Prompt Engineering and many more. NOTE: Drop an email to [email protected] with the transaction receipt for a free PDF version. Key Features: Step-by-step code explanations with expected outputs for each solution. No prerequisites: If you know Python, you're ready to dive in. Practical, hands-on guide with minimal mathematical explanations. Book Description: Since the arrival of ChatGPT in late 2022, the AI landscape has evolved dramatically. "LangChain in your Pocket" invites you to move beyond ChatGPT and explore the versatility of LangChain, a Python/JavaScript framework at the forefront of Large Language Models (LLMs). Whether you're building Classification models, Storyteller, or Internet-enabled GPT, LangChain empowers you to do more. This beginner-friendly introduction covers: Basics of Large Language Models (LLMs) and why LangChain is pivotal. Hello World tutorial for setting up LangChain and creating baseline applications. In-depth chapters on each LangChain module. Advanced problem-solving, including Multi-Document RAG, Hallucinations, NLP chains, and Evaluation for LLMs for supervised and unsupervised ML problems. Dedicated sections for Few-Shot Learning, Advanced Prompt Engineering using ReAct, Autonomous AI agents, and deployment using LangServe. Who should read it? This book is for anyone keen on exploring AI, especially Generative AI. Whether you're a Software Developer, Data Scientist, Student or Content Writer, the focus on diverse use cases in LangChain and GenAI makes it equally valuable to all. Table of Contents Introduction Hello World Different LangChain Modules Models & Prompts Chains Agents OutputParsers & Memory Callbacks RAG Framework & Vector Databases LangChain for NLP problems Handling LLM Hallucinations Evaluating LLMs Advanced Prompt Engineering Autonomous AI agents LangSmith & LangServe Additional Features
Download or read book LangChain for RAG Beginners Build Your First Powerful AI GPT Agent written by Karel Hernandez Rodriguez and published by Karel Hernandez Rodriguez. This book was released on 2024-08-14 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive into the world of advanced AI with "Python LangChain for RAG Beginners" ✔ Learn how to code Agentic RAG Powered Chatbot Systems. ✔ Empower your Agents with Tools ✔ Learn how to Create your Own Agents This comprehensive guide takes you on a journey through LangChain, an innovative framework designed to harness the power of Generative Pre-trained Transformers (GPTs) and other large language models (LLMs) for creating sophisticated AI-driven applications. Starting from the basics, this book provides a detailed understanding of how to effectively use LangChain to build, customize, and deploy AI applications that can think, learn, and interact seamlessly. You will explore the core concepts of LangChain, including prompt engineering, memory management, and Retrieval Augmented Generation (RAG). Each chapter is packed with practical examples and code snippets that demonstrate real-world applications and use cases. Key highlights include: Getting Started with LangChain: Learn the foundational principles and set up your environment. Advanced Prompt Engineering: Craft effective prompts to enhance AI interactions. Memory Management: Implement various memory types to maintain context and continuity in conversations. Retrieval Augmented Generation (RAG): Integrate external knowledge bases to expand your AI's capabilities. Building Intelligent Agents: Create agents that can autonomously perform tasks and make decisions. Practical Use Cases: Explore building a chat agent with web UI that allows you chatting with documents, web retrieval, vector databases for long term memory and much more ! Whether you are an AI enthusiast, a developer looking to integrate AI into your projects, or a professional aiming to stay ahead in the AI-driven world, " Python LangChain for RAG Beginners" provides the tools and knowledge to elevate your AI skills. Embrace the future of AI and transform your ideas into powerful, intelligent applications with LangChain.
Download or read book Mastering NLP from Foundations to LLMs written by Lior Gazit and published by Packt Publishing Ltd. This book was released on 2024-04-26 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.
Download or read book Supercharge Your Applications with GraalVM written by A B Vijay Kumar and published by Packt Publishing Ltd. This book was released on 2021-08-10 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the internals and architecture of GraalVM with the help of hands-on experiments and gain deep knowledge that you can apply to improve your application's performance, interoperability, and throughput. Key FeaturesGenerate faster and leaner code with minimum computing resources for high performanceCompile Java applications faster than ever to a standalone executable called native imagesCreate high-performance polyglot applications that are compatible across various JVM and non-JVM languagesBook Description GraalVM is a universal virtual machine that allows programmers to compile and run applications written in both JVM and non-JVM languages. It improves the performance and efficiency of applications, making it an ideal companion for cloud-native or microservices-based applications. This book is a hands-on guide, with step-by-step instructions on how to work with GraalVM. Starting with a quick introduction to the GraalVM architecture and how things work under the hood, you'll discover the performance benefits of running your Java applications on GraalVM. You'll then learn how to create native images and understand how AOT (ahead-of-time) can improve application performance significantly. The book covers examples of building polyglot applications that will help you explore the interoperability between languages running on the same VM. You'll also see how you can use the Truffle framework to implement any language of your choice to run optimally on GraalVM. By the end of this book, you'll not only have learned how GraalVM is beneficial in cloud-native and microservices development but also how to leverage its capabilities to create high-performing polyglot applications. What you will learnGain a solid understanding of GraalVM and how it works under the hoodWork with GraalVM's high performance optimizing compiler and see how it can be used in both JIT (just-in-time) and AOT (ahead-of-time) modesGet to grips with the various optimizations that GraalVM performs at runtimeUse advanced tools to analyze and diagnose performance issues in the codeCompile, embed, run, and interoperate between languages using Truffle on GraalVMBuild optimum microservices using popular frameworks such as Micronaut and Quarkus to create cloud-native applicationsWho this book is for This book is for JVM developers looking to optimize their application's performance. You'll also find this book useful if you're a JVM developer looking to explore options to develop polyglot applications using tools from the Python, R, Ruby, or Node.js ecosystem. A solid understanding of software development concepts and prior experience working with programming languages is necessary to get started.
Download or read book ChatGPT for Conversational AI and Chatbots written by Adrian Thompson and published by Packt Publishing Ltd. This book was released on 2024-07-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore ChatGPT technologies to create state-of-the-art chatbots and voice assistants, and prepare to lead the AI revolution Key Features Learn how to leverage ChatGPT to create innovative conversational AI solutions for your organization Harness LangChain and delve into step-by-step LLM application development for conversational AI Gain insights into security, privacy, and the future landscape of large language models and conversational AI Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionChatGPT for Conversational AI and Chatbots is a definitive resource for exploring conversational AI, ChatGPT, and large language models. This book introduces the fundamentals of ChatGPT and conversational AI automation. You’ll explore the application of ChatGPT in conversation design, the use of ChatGPT as a tool to create conversational experiences, and a range of other practical applications. As you progress, you’ll delve into LangChain, a dynamic framework for LLMs, covering topics such as prompt engineering, chatbot memory, using vector stores, and validating responses. Additionally, you’ll learn about creating and using LLM-enabling tools, monitoring and fine tuning, LangChain UI tools such as LangFlow, and the LangChain ecosystem. You’ll also cover popular use cases, such as using ChatGPT in conjunction with your own data. Later, the book focuses on creating a ChatGPT-powered chatbot that can comprehend and respond to queries directly from your unique data sources. The book then guides you through building chatbot UIs with ChatGPT API and some of the tools and best practices available. By the end of this book, you’ll be able to confidently leverage ChatGPT technologies to build conversational AI solutions.What you will learn Gain a solid understanding of ChatGPT and its capabilities and limitations Understand how to use ChatGPT for conversation design Discover how to use advanced LangChain techniques, such as prompting, memory, agents, chains, vector stores, and tools Create a ChatGPT chatbot that can answer questions about your own data Develop a chatbot powered by ChatGPT API Explore the future of conversational AI, LLMs, and ChatGPT alternatives Who this book is for This book is for tech-savvy readers, conversational AI practitioners, engineers, product owners, business analysts, and entrepreneurs wanting to integrate ChatGPT into conversational experiences and explore the possibilities of this game-changing technology. Anyone curious about using internal data with ChatGPT and looking to stay up to date with the developments in large language models will also find this book helpful. Some expertise in coding and standard web design concepts would be useful, along with familiarity with conversational AI terminology, though not essential.
Download or read book Machine Learning Upgrade written by Kristen Kehrer and published by John Wiley & Sons. This book was released on 2024-07-29 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed guide to implementing new technology in workspaces From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system—not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices. Gain an understanding of the intersection between large language models and unstructured data Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking Discover best practices for training, fine tuning, and evaluating LLMs Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.
Download or read book Mastering Large Language Models with Python written by Raj Arun R and published by Orange Education Pvt Ltd. This book was released on 2024-04-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index
Download or read book Unlocking Data with Generative AI and RAG written by Keith Bourne and published by Packt Publishing Ltd. This book was released on 2024-09-27 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage Key Features Optimize data retrieval and generation using vector databases Boost decision-making and automate workflows with AI agents Overcome common challenges in implementing real-world RAG systems Purchase of the print or Kindle book includes a free PDF eBook Book Description Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique. What you will learn Understand RAG principles and their significance in generative AI Integrate LLMs with internal data for enhanced operations Master vectorization, vector databases, and vector search techniques Develop skills in prompt engineering specific to RAG and design for precise AI responses Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications Overcome scalability, data quality, and integration issues Discover strategies for optimizing data retrieval and AI interpretability Who this book is for This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.
Download or read book Python Data Cleaning and Preparation Best Practices written by Maria Zervou and published by Packt Publishing Ltd. This book was released on 2024-09-27 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your data preparation skills to the next level by converting any type of data asset into a structured, formatted, and readily usable dataset Key Features Maximize the value of your data through effective data cleaning methods Enhance your data skills using strategies for handling structured and unstructured data Elevate the quality of your data products by testing and validating your data pipelines Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionProfessionals face several challenges in effectively leveraging data in today's data-driven world. One of the main challenges is the low quality of data products, often caused by inaccurate, incomplete, or inconsistent data. Another significant challenge is the lack of skills among data professionals to analyze unstructured data, leading to valuable insights being missed that are difficult or impossible to obtain from structured data alone. To help you tackle these challenges, this book will take you on a journey through the upstream data pipeline, which includes the ingestion of data from various sources, the validation and profiling of data for high-quality end tables, and writing data to different sinks. You’ll focus on structured data by performing essential tasks, such as cleaning and encoding datasets and handling missing values and outliers, before learning how to manipulate unstructured data with simple techniques. You’ll also be introduced to a variety of natural language processing techniques, from tokenization to vector models, as well as techniques to structure images, videos, and audio. By the end of this book, you’ll be proficient in data cleaning and preparation techniques for both structured and unstructured data.What you will learn Ingest data from different sources and write it to the required sinks Profile and validate data pipelines for better quality control Get up to speed with grouping, merging, and joining structured data Handle missing values and outliers in structured datasets Implement techniques to manipulate and transform time series data Apply structure to text, image, voice, and other unstructured data Who this book is for Whether you're a data analyst, data engineer, data scientist, or a data professional responsible for data preparation and cleaning, this book is for you. Working knowledge of Python programming is needed to get the most out of this book.
Download or read book Programming Large Language Models with Azure Open AI written by Francesco Esposito and published by Microsoft Press. This book was released on 2024-04-03 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use LLMs to build better business software applications Autonomously communicate with users and optimize business tasks with applications built to make the interaction between humans and computers smooth and natural. Artificial Intelligence expert Francesco Esposito illustrates several scenarios for which a LLM is effective: crafting sophisticated business solutions, shortening the gap between humans and software-equipped machines, and building powerful reasoning engines. Insight into prompting and conversational programming—with specific techniques for patterns and frameworks—unlock how natural language can also lead to a new, advanced approach to coding. Concrete end-to-end demonstrations (featuring Python and ASP.NET Core) showcase versatile patterns of interaction between existing processes, APIs, data, and human input. Artificial Intelligence expert Francesco Esposito helps you: Understand the history of large language models and conversational programming Apply prompting as a new way of coding Learn core prompting techniques and fundamental use-cases Engineer advanced prompts, including connecting LLMs to data and function calling to build reasoning engines Use natural language in code to define workflows and orchestrate existing APIs Master external LLM frameworks Evaluate responsible AI security, privacy, and accuracy concerns Explore the AI regulatory landscape Build and implement a personal assistant Apply a retrieval augmented generation (RAG) pattern to formulate responses based on a knowledge base Construct a conversational user interface For IT Professionals and Consultants For software professionals, architects, lead developers, programmers, and Machine Learning enthusiasts For anyone else interested in natural language processing or real-world applications of human-like language in software