Download or read book The Kernel Function and Conformal Mapping written by Stefan Bergman and published by American Mathematical Soc.. This book was released on 1950-03 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Kernel Function and Conformal Mapping by Stefan Bergman is a revised edition of ""The Kernel Function"". The author has made extensive changes in the original volume. The present book will be of interest not only to mathematicians, but also to engineers, physicists, and computer scientists. The applications of orthogonal functions in solving boundary value problems and conformal mappings onto canonical domains are discussed; and publications are indicated where programs for carrying out numerical work using high-speed computers can be found.The unification of methods in the theory of functions of one and several complex variables is one of the purposes of introducing the kernel function and the domains with a distinguished boundary. This approach has been extensively developed during the last two decades. This second edition of Professor Bergman's book reviews this branch of the theory including recent developments not dealt with in the first edition. The presentation of the topics is simple and presupposes only knowledge of an elementary course in the theory of analytic functions of one variable.
Download or read book Conformal Mapping written by Zeev Nehari and published by Courier Corporation. This book was released on 2012-05-23 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.
Download or read book Handbook of Conformal Mappings and Applications written by Prem K. Kythe and published by CRC Press. This book was released on 2019-03-04 with total page 943 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.
Download or read book The Cauchy Transform Potential Theory and Conformal Mapping written by Steven R. Bell and published by CRC Press. This book was released on 2015-11-04 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cauchy Transform, Potential Theory and Conformal Mapping explores the most central result in all of classical function theory, the Cauchy integral formula, in a new and novel way based on an advance made by Kerzman and Stein in 1976.The book provides a fast track to understanding the Riemann Mapping Theorem. The Dirichlet and Neumann problems f
Download or read book Conformal Mappings and Boundary Value Problems written by Guo-Chun Wen and published by American Mathematical Soc.. This book was released on with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Translated from the Chinese. Conformal mapping and boundary value problems are two major branches of complex function theory. The former is the geometric theory of analytic functions, and the latter is the analysis theory governing the close relationship between abstract theory and many concrete problems. Topics include applications of Cauchy type integrals, the Hilbert boundary value problem, quasiconformal mappings, and basic boundary value problems for harmonic functions. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Conformal Mapping written by Roland Schinzinger and published by Courier Corporation. This book was released on 2012-04-30 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with a brief survey of some basic mathematical concepts, this graduate-level text proceeds to discussions of a selection of mapping functions, numerical methods and mathematical models, nonplanar fields and nonuniform media, static fields in electricity and magnetism, and transmission lines and waveguides. Other topics include vibrating membranes and acoustics, transverse vibrations and buckling of plates, stresses and strains in an elastic medium, steady state heat conduction in doubly connected regions, transient heat transfer in isotropic and anisotropic media, and fluid flow. Revision of 1991 ed. 247 figures. 38 tables. Appendices.
Download or read book Numerical Conformal Mapping written by Nicolas Papamichael and published by World Scientific. This book was released on 2010 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a unique monograph on numerical conformal mapping that gives a comprehensive account of the theoretical, computational and application aspects of the problems of determining conformal modules of quadrilaterals and of mapping conformally onto a rectangle. It contains a detailed study of the theory and application of a domain decomposition method for computing the modules and associated conformal mappings of elongated quadrilaterals, of the type that occur in engineering applications. The reader will find a highly useful and up-to-date survey of available numerical methods and associated computer software for conformal mapping. The book also highlights the crucial role that function theory plays in the development of numerical conformal mapping methods, and illustrates the theoretical insight that can be gained from the results of numerical experiments.This is a valuable resource for mathematicians, who are interested in numerical conformal mapping and wish to study some of the recent developments in the subject, and for engineers and scientists who use, or would like to use, conformal transformations and wish to find out more about the capabilities of modern numerical conformal mapping.
Download or read book Menahem Max Schiffer Selected Papers Volume 1 written by Peter Duren and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Download or read book Handbook of Complex Analysis written by Reiner Kuhnau and published by Elsevier. This book was released on 2004-12-09 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
Download or read book Menahem Max Schiffer Selected Papers Volume 2 written by Peter Duren and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Download or read book Geometric Theory of Functions of a Complex Variable written by Gennadiĭ Mikhaĭlovich Goluzin and published by American Mathematical Soc.. This book was released on 1969 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Differential Geometry and Riemannian Geometry written by Erwin Kreyszig and published by University of Toronto Press. This book was released on 1968-12-15 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the differential geometry of curves and surfaces in three-dimensional Euclidean space and to n-dimensional Riemannian geometry. Based on Kreyszig's earlier book Differential Geometry, it is presented in a simple and understandable manner with many examples illustrating the ideas, methods, and results. Among the topics covered are vector and tensor algebra, the theory of surfaces, the formulae of Weingarten and Gauss, geodesics, mappings of surfaces and their applications, and global problems. A thorough investigation of Reimannian manifolds is made, including the theory of hypersurfaces. Interesting problems are provided and complete solutions are given at the end of the book together with a list of the more important formulae. Elementary calculus is the sole prerequisite for the understanding of this detailed and complete study in mathematics.
Download or read book Complex Analysis and Dynamical Systems III written by Mark Lʹvovich Agranovskiĭ and published by American Mathematical Soc.. This book was released on 2008 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, minimal surfaces, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of approximation theory and partial differential equations. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, drawn by a number of leading figures in the field.
Download or read book Encyclopaedia of Mathematics Supplement III written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2007-11-23 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
Download or read book Quasiconformal Mappings and Analysis written by Peter Duren and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: In honor of Frederick W. Gehring on the occasion of his 70th birthday, an international conference on ""Quasiconformal mappings and analysis"" was held in Ann Arbor in August 1995. The 9 main speakers of the conference (Astala, Earle, Jones, Kra, Lehto, Martin, Pommerenke, Sullivan, and Vaisala) provide broad expository articles on various aspects of quasiconformal mappings and their relations to other areas of analysis. 12 other distinguished mathematicians contribute articles to this volume.
Download or read book The Madison Symposium on Complex Analysis written by Edgar Lee Stout and published by American Mathematical Soc.. This book was released on 1992 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a Symposium on Complex Analysis, held at the University of Wisconsin at Madison in June 1991 on the occasion of the retirement of Walter Rudin. During the week of the conference, a group of about two hundred mathematicians from many nations gathered to discuss recent developments in complex analysis and to celebrate Rudin's long and productive career. Among the main subjects covered are applications of complex analysis to operator theory, polynomial convexity, holomorphic mappings, boundary behaviour of holomorphic functions, function theory on the unit disk and ball, and some aspects of the theory of partial differential equations related to complex analysis. Containing papers by some of the world's leading experts in these subjects, this book reports on current directions in complex analysis and presents an excellent mixture of the analytic and geometric aspects of the theory.
Download or read book Conformal Maps And Geometry written by Dmitry Beliaev and published by World Scientific. This book was released on 2019-11-19 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.