EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Kelvin Helmholtz Instability in a Stratified Shear Flow

Download or read book The Kelvin Helmholtz Instability in a Stratified Shear Flow written by Francisco Villasenor and published by . This book was released on 1987 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Kelvin Helmholtz Instability in a Stratified Shear Flow

Download or read book The Kelvin Helmholtz Instability in a Stratified Shear Flow written by and published by . This book was released on 1991 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Kelvin Helmholtz Instability in a Flowing Plasma

Download or read book The Kelvin Helmholtz Instability in a Flowing Plasma written by Bergen R. Suydam and published by . This book was released on 1969 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the continuously flowing pinch the effect of shear in the velocity field on interchange stability is of some importance. We accordingly have examined the normal mode equations in the limit of negligible cylindrical curvature (equivalent to plane flow) and in the limit of dominant cylindrical curvature. These two limiting cases give very similar reslts and show that the development of the Kelvin-Helmholtz instability does not depend merely on the presene of shear but rather on the details of the velocity profile. Our study seems to indicate that the instability develops only if there is a layer of high shear between two layers of lower shear. These results correct erroneous statements about the effect of shear made in Los Alamos Report LA-4034-MS.

Book Kelvin helmholtz Instability of a Bottom intensified Jet

Download or read book Kelvin helmholtz Instability of a Bottom intensified Jet written by Chandana R. Somayaji and published by . This book was released on 2013 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Kelvin-Helmholtz instability is the inertial destabilization of a parallel shear flow in a density stratified fluid under the influence of gravity. For example, this type of instability manifests itself as surface waves in the ocean when wind blows over the water surface. In this thesis we solve the nonhydrostatic Kelvin-Helmholtz instability problem for a near-bottom jet with a continuous velocity profile in a flat-bottomed non-rotating density-stratified fluid. Of particular note, the nonhydrostatic stability problem modelled here has a high wavenumber cutoff and does not exhibit an ultraviolet catastrophe unlike other inviscid stability calculations that have been previously published.

Book Shear Layer and Jet Instability in Stratified Media

Download or read book Shear Layer and Jet Instability in Stratified Media written by George H. Fichtl and published by . This book was released on 1970 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stability to small perturbations of shear layer and jet flows (z) in atmospheres with potential temperature (z) is investigated. The problem is reduced to a chardcteristic value problem for the dimensionless wave frequency v which appears in a second-order differential equation with the dependent variable being the horizontal and temporal Fourier transform amplitude of the vertical component of the perturbation momentum vector. Broken-line profiles of E(z) and (z) are used in the analysis of this problem. Integral equations, over the domain of the fluid, which contain both quadratic forms and interfacial contributions, are derived. The interfacial terms vanish for continuous flows, and the theorems of Synge, Howard, and Miles follow. A necessary and sufficient condition for instability is also obtained for continuous flows; however, its usefulness is compromised by integrands which depend on both the basic state flow and the dependent variable of the governing differential equation.

Book Instability in Geophysical Flows

Download or read book Instability in Geophysical Flows written by William D. Smyth and published by Cambridge University Press. This book was released on 2019-04-25 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instability. Classical analytical approaches are covered, while also emphasising numerical methods, mechanisms such as internal wave resonance, and simple `rules of thumb' that permit assessment of instability quickly and intuitively. Part II introduces the cutting edge: nonmodal instabilities, the relationship between instability and turbulence, self-organised criticality, and advanced numerical techniques. Featuring numerous exercises and projects, the book is ideal for advanced students and researchers wishing to understand flow instability and apply it to their own research. It can be used to teach courses in oceanography, atmospheric science, coastal engineering, applied mathematics and environmental science. Exercise solutions and MATLAB® examples are provided online. Also available as Open Access on Cambridge Core.

Book Instability in Geophysical Flows

Download or read book Instability in Geophysical Flows written by William D. Smyth and published by Cambridge University Press. This book was released on 2019-04-11 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Open Access overview of physical processes that generate instability in geophysical flows, emphasising numerical methods and simple rules to predict instability.

Book Ocean Mixing

    Book Details:
  • Author : Michael Meredith
  • Publisher : Elsevier
  • Release : 2021-09-16
  • ISBN : 0128215135
  • Pages : 386 pages

Download or read book Ocean Mixing written by Michael Meredith and published by Elsevier. This book was released on 2021-09-16 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ocean Mixing: Drivers, Mechanisms and Impacts presents a broad panorama of one of the most rapidly-developing areas of marine science. It highlights the state-of-the-art concerning knowledge of the causes of ocean mixing, and a perspective on the implications for ocean circulation, climate, biogeochemistry and the marine ecosystem. This edited volume places a particular emphasis on elucidating the key future questions relating to ocean mixing, and emerging ideas and activities to address them, including innovative technology developments and advances in methodology. Ocean Mixing is a key reference for those entering the field, and for those seeking a comprehensive overview of how the key current issues are being addressed and what the priorities for future research are. Each chapter is written by established leaders in ocean mixing research; the volume is thus suitable for those seeking specific detailed information on sub-topics, as well as those seeking a broad synopsis of current understanding. It provides useful ammunition for those pursuing funding for specific future research campaigns, by being an authoritative source concerning key scientific goals in the short, medium and long term. Additionally, the chapters contain bespoke and informative graphics that can be used in teaching and science communication to convey the complex concepts and phenomena in easily accessible ways. Presents a coherent overview of the state-of-the-art research concerning ocean mixing Provides an in-depth discussion of how ocean mixing impacts all scales of the planetary system Includes elucidation of the grand challenges in ocean mixing, and how they might be addressed

Book The General Kelvin Helmholtz Stability Model

Download or read book The General Kelvin Helmholtz Stability Model written by Hermann Moshagen and published by Springer Nature. This book was released on with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluid Mechanics

    Book Details:
  • Author : Pijush K. Kundu
  • Publisher : Academic Press
  • Release : 2012
  • ISBN : 0123821002
  • Pages : 919 pages

Download or read book Fluid Mechanics written by Pijush K. Kundu and published by Academic Press. This book was released on 2012 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.

Book Introduction to Geophysical Fluid Dynamics

Download or read book Introduction to Geophysical Fluid Dynamics written by Benoit Cushman-Roisin and published by Academic Press. This book was released on 2011-08-26 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation Biographical and historical notes at the ends of chapters trace the intellectual development of the field Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)

Book Stability and Transition in Shear Flows

Download or read book Stability and Transition in Shear Flows written by Peter J. Schmid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Book Introduction to Hydrodynamic Stability

Download or read book Introduction to Hydrodynamic Stability written by P. G. Drazin and published by Cambridge University Press. This book was released on 2002-09-09 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instability of flows and their transition to turbulence are widespread phenomena in engineering and the natural environment, and are important in applied mathematics, astrophysics, biology, geophysics, meteorology, oceanography and physics as well as engineering. This is a textbook to introduce these phenomena at a level suitable for a graduate course, by modelling them mathematically, and describing numerical simulations and laboratory experiments. The visualization of instabilities is emphasized, with many figures, and in references to more still and moving pictures. The relation of chaos to transition is discussed at length. Many worked examples and exercises for students illustrate the ideas of the text. Readers are assumed to be fluent in linear algebra, advanced calculus, elementary theory of ordinary differential equations, complex variables and the elements of fluid mechanics. The book is aimed at graduate students but will also be very useful for specialists in other fields.

Book Theoretical Fluid Dynamics

Download or read book Theoretical Fluid Dynamics written by Achim Feldmeier and published by Springer Nature. This book was released on 2020-03-17 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.

Book Turbulence in Rotating  Stratified and Electrically Conducting Fluids

Download or read book Turbulence in Rotating Stratified and Electrically Conducting Fluids written by P. A. Davidson and published by Cambridge University Press. This book was released on 2013-09-12 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are two recurring themes in astrophysical and geophysical fluid mechanics: waves and turbulence. This book investigates how turbulence responds to rotation, stratification or magnetic fields, identifying common themes, where they exist, as well as the essential differences which inevitably arise between different classes of flow. The discussion is developed from first principles, making the book suitable for graduate students as well as professional researchers. The author focuses first on the fundamentals and then progresses to such topics as the atmospheric boundary layer, turbulence in the upper atmosphere, turbulence in the core of the earth, zonal winds in the giant planets, turbulence within the interior of the sun, the solar wind, and turbulent flows in accretion discs. The book will appeal to engineers, geophysicists, astrophysicists and applied mathematicians who are interested in naturally occurring turbulent flows.

Book Buoyancy Effects in Fluids

Download or read book Buoyancy Effects in Fluids written by John Stewart Turner and published by Cambridge University Press. This book was released on 1979-12-20 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.

Book Space Physics and Aeronomy  Magnetospheres in the Solar System

Download or read book Space Physics and Aeronomy Magnetospheres in the Solar System written by Romain Maggiolo and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief