Download or read book On the Cauchy Problem written by Sigeru Mizohata and published by Academic Press. This book was released on 2014-05-10 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.
Download or read book The Hyperbolic Cauchy Problem written by Kunihiko Kajitani and published by Springer. This book was released on 2006-11-15 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The approach to the Cauchy problem taken here by the authors is based on theuse of Fourier integral operators with a complex-valued phase function, which is a time function chosen suitably according to the geometry of the multiple characteristics. The correctness of the Cauchy problem in the Gevrey classes for operators with hyperbolic principal part is shown in the first part. In the second part, the correctness of the Cauchy problem for effectively hyperbolic operators is proved with a precise estimate of the loss of derivatives. This method can be applied to other (non) hyperbolic problems. The text is based on a course of lectures given for graduate students but will be of interest to researchers interested in hyperbolic partial differential equations. In the latter part the reader is expected to be familiar with some theory of pseudo-differential operators.
Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Download or read book Lectures on Cauchy s Problem in Linear Partial Differential Equations written by Jacques Hadamard and published by . This book was released on 1923 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperbolic Partial Differential Equations written by Serge Alinhac and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Download or read book The Cauchy Problem in General Relativity written by Hans Ringström and published by European Mathematical Society. This book was released on 2009 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Download or read book Advances in Microlocal and Time Frequency Analysis written by Paolo Boggiatto and published by Springer Nature. This book was released on 2020-03-03 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.
Download or read book Applications of Functional Analysis in Mathematical Physics written by S L (Sergeĭ Lʹvovich) 190 Sobolev and published by Hassell Street Press. This book was released on 2021-09-09 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Download or read book Abstract and Applied Analysis written by N. M. Chuong and published by World Scientific. This book was released on 2004 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume takes up various topics in Mathematical Analysis including boundary and initial value problems for Partial Differential Equations and Functional Analytic methods.Topics include linear elliptic systems for composite material ? the coefficients may jump from domain to domain; Stochastic Analysis ? many applied problems involve evolution equations with random terms, leading to the use of stochastic analysis.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
Download or read book Multi dimensional Hyperbolic Partial Differential Equations written by Sylvie Benzoni-Gavage and published by Oxford University Press, USA. This book was released on 2007 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by leading scholars, this comprehensive text presents a view of the multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. It is useful to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Download or read book The Hyperbolic Cauchy Problem written by Kunihiko Kajitani and published by . This book was released on 2014-01-15 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Front Tracking for Hyperbolic Conservation Laws written by Helge Holden and published by Springer. This book was released on 2015-12-10 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.
Download or read book Einstein s Field Equations and Their Physical Implications written by Bernd G. Schmidt and published by Springer. This book was released on 2008-01-11 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.
Download or read book The Cauchy Problem for Hyperbolic Operators written by Karen Yagdjian and published by De Gruyter Akademie Forschung. This book was released on 1997 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Systems of Conservation Laws written by Yuxi Zheng and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.
Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Download or read book Abstract Cauchy Problems written by Irina V. Melnikova and published by CRC Press. This book was released on 2001-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat