Download or read book The Hamiltonian Hopf Bifurcation written by Jan Cornelis van der Meer and published by Springer. This book was released on 2006-11-14 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Hamiltonian Hopf Bifurcation written by Jan-Cees van der Meer and published by . This book was released on 1983 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Metamorphoses of Hamiltonian Systems with Symmetries written by Konstantinos Efstathiou and published by Springer. This book was released on 2005-01-28 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.
Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Download or read book The Hopf Bifurcation and Its Applications written by J. E. Marsden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.
Download or read book Elements of Differentiable Dynamics and Bifurcation Theory written by David Ruelle and published by Elsevier. This book was released on 2014-05-10 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.
Download or read book Numerical Continuation and Bifurcation in Nonlinear PDEs written by Hannes Uecker and published by SIAM. This book was released on 2021-08-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Download or read book Metamorphoses of Hamiltonian Systems with Symmetries written by Konstantinos Efstathiou and published by Springer Science & Business Media. This book was released on 2005 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Normal Forms Melnikov Functions and Bifurcations of Limit Cycles written by Maoan Han and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.
Download or read book Local and Semi Local Bifurcations in Hamiltonian Dynamical Systems written by Heinz Hanßmann and published by Springer. This book was released on 2006-10-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates that while elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Therefore, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system, absent untypical conditions or external parameters. The text moves logically from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations must be replaced by Cantor sets.
Download or read book Fourier Analysis of Economic Phenomena written by Toru Maruyama and published by Springer. This book was released on 2019-07-03 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph that discusses in detail the interactions between Fourier analysis and dynamic economic theories, in particular, business cycles.Many economic theories have analyzed cyclical behaviors of economic variables. In this book, the focus is on a couple of trials: (1) the Kaldor theory and (2) the Slutsky effect. The Kaldor theory tries to explain business fluctuations in terms of nonlinear, 2nd-order ordinary differential equations (ODEs). In order to explain periodic behaviors of a solution, the Hopf-bifurcation theorem frequently plays a key role. Slutsky's idea is to look at the periodic movement as an overlapping effect of random shocks. The Slutsky process is a weakly stationary process, the periodic (or almost periodic) behavior of which can be analyzed by the Bochner theorem. The goal of this book is to give a comprehensive and rigorous justification of these ideas. Therefore, the aim is first to give a complete theory that supports the Hopf theorem and to prove the existence of periodic solutions of ODEs; and second to explain the mathematical structure of the Bochner theorem and its relation to periodic (or almost periodic) behaviors of weakly stationary processes.Although these two targets are the principal ones, a large number of results from Fourier analysis must be prepared in order to reach these goals. The basic concepts and results from classical as well as generalized Fourier analysis are provided in a systematic way.Prospective readers are assumed to have sufficient knowledge of real, complex analysis. However, necessary economic concepts are explained in the text, making this book accessible even to readers without a background in economics.
Download or read book IUTAM Symposium on Nonlinear Stochastic Dynamics written by N. Sri Namachchivaya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.
Download or read book Normal Forms and Homoclinic Chaos written by William F. Langford and published by American Mathematical Soc.. This book was released on 1995 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents new research on normal forms, symmetry, homoclinic cycles, and chaos, from the Workshop on Normal Forms and Homoclinic Chaos held during The Fields Institute Program Year on Dynamical Systems and Bifurcation Theory in November 1992, in Waterloo, Canada. The workshop bridged the local and global analysis of dynamical systems with emphasis on normal forms and the recently discovered homoclinic cycles which may arise in normal forms.
Download or read book Ordinary Differential Equations A Dynamical Point Of View written by Stephen Wiggins and published by World Scientific. This book was released on 2023-08-15 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations is a standard course in the undergraduate mathematics curriculum that usually comes after the first university calculus and linear algebra courses taken by a mathematics major. Such courses may also typically be attended by undergraduates from other areas of physical and social sciences, and engineering. The content of such a course has remained fairly static over time, despite the expansion of the topic into other disciplines as a result of the dynamical systems point of view.This core undergraduate course updated from the dynamical systems perspective can easily be covered in one semester, with room for projects or more advanced topics tailored to the interests of the students.
Download or read book Bifurcation Theory of Functional Differential Equations written by Shangjiang Guo and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).
Download or read book Dynamics Stochastics written by Michael S. Keane and published by IMS. This book was released on 2006 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hamiltonian Dynamical Systems written by H.S. Dumas and published by Springer Science & Business Media. This book was released on 1995-03-10 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.