Download or read book The Hacker s Guide to Scaling Python written by Julien Danjou and published by Julien Danjou. This book was released on 2017 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python is a wonderful programming language that allows writing applications quickly. But how do you make those applications scale for thousands of users and requests? It takes years of practice, research, trial and errors to build experience and knowledge along the way. Simple questions such as "How do I make my code faster?" or "How do I make sure there is no bottleneck?" cost hours to find good answers. Without enough background on the topic, you'll never be sure that any answer you'll come up with will be correct. The Hacker's Guide to Scaling Python will help you solve that by providing guidelines, tips and best practice. Adding a few interviews of experts on the subject, you will learn how you can distribute your Python application so it is able to process thousands of requests.
Download or read book The Hacker s Guide to Python written by Julien Danjou and published by Julien Danjou. This book was released on 2016-05-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python is a wonderful programming language that is being used more and more in many different industries. It is fast, flexible, and it comes with batteries included. Most of the books you read about Python will teach you the language basics – but once you've learnt them, you’re on your own in designing your application and discovering best practice. In this book, we'll see how you can leverage Python to efficiently tackle your problems and build great Python applications.
Download or read book Serious Python written by Julien Danjou and published by No Starch Press. This book was released on 2018-12-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable collection of practical tips and real-world advice for tackling common Python problems and taking your code to the next level. Features interviews with high-profile Python developers who share their tips, tricks, best practices, and real-world advice gleaned from years of experience. Sharpen your Python skills as you dive deep into the Python programming language with Serious Python. You'll cover a range of advanced topics like multithreading and memorization, get advice from experts on things like designing APIs and dealing with databases, and learn Python internals to help you gain a deeper understanding of the language itself. Written for developers and experienced programmers, Serious Python brings together over 15 years of Python experience to teach you how to avoid common mistakes, write code more efficiently, and build better programs in less time. As you make your way through the book's extensive tutorials, you'll learn how to start a project and tackle topics like versioning, layouts, coding style, and automated checks. You'll learn how to package your software for distribution, optimize performance, use the right data structures, define functions efficiently, pick the right libraries, build future-proof programs, and optimize your programs down to the bytecode. You'll also learn how to: - Make and use effective decorators and methods, including abstract, static, and class methods - Employ Python for functional programming using generators, pure functions, and functional functions - Extend flake8 to work with the abstract syntax tree (AST) to introduce more sophisticated automatic checks into your programs - Apply dynamic performance analysis to identify bottlenecks in your code - Work with relational databases and effectively manage and stream data with PostgreSQL If you've been looking for a way to take your Python skills from good to great, Serious Python will help you get there. Learn from the experts and get seriously good at Python with Serious Python!
Download or read book Machine Learning for Hackers written by Drew Conway and published by "O'Reilly Media, Inc.". This book was released on 2012-02-13 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Python for Scientists written by John M. Stewart and published by Cambridge University Press. This book was released on 2017-07-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Download or read book Serious Python written by Julien Danjou and published by No Starch Press. This book was released on 2018-12-27 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable collection of practical tips and real-world advice for tackling common Python problems and taking your code to the next level. Features interviews with high-profile Python developers who share their tips, tricks, best practices, and real-world advice gleaned from years of experience. Sharpen your Python skills as you dive deep into the Python programming language with Serious Python. You'll cover a range of advanced topics like multithreading and memorization, get advice from experts on things like designing APIs and dealing with databases, and learn Python internals to help you gain a deeper understanding of the language itself. Written for developers and experienced programmers, Serious Python brings together over 15 years of Python experience to teach you how to avoid common mistakes, write code more efficiently, and build better programs in less time. As you make your way through the book's extensive tutorials, you'll learn how to start a project and tackle topics like versioning, layouts, coding style, and automated checks. You'll learn how to package your software for distribution, optimize performance, use the right data structures, define functions efficiently, pick the right libraries, build future-proof programs, and optimize your programs down to the bytecode. You'll also learn how to: - Make and use effective decorators and methods, including abstract, static, and class methods - Employ Python for functional programming using generators, pure functions, and functional functions - Extend flake8 to work with the abstract syntax tree (AST) to introduce more sophisticated automatic checks into your programs - Apply dynamic performance analysis to identify bottlenecks in your code - Work with relational databases and effectively manage and stream data with PostgreSQL If you've been looking for a way to take your Python skills from good to great, Serious Python will help you get there. Learn from the experts and get seriously good at Python with Serious Python!
Download or read book Architecture Patterns with Python written by Harry Percival and published by O'Reilly Media. This book was released on 2020-03-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Python continues to grow in popularity, projects are becoming larger and more complex. Many Python developers are now taking an interest in high-level software design patterns such as hexagonal/clean architecture, event-driven architecture, and the strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn’t always straightforward. With this hands-on guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity—and get the most value out of their test suites. Each pattern is illustrated with concrete examples in beautiful, idiomatic Python, avoiding some of the verbosity of Java and C# syntax. Patterns include: Dependency inversion and its links to ports and adapters (hexagonal/clean architecture) Domain-driven design’s distinction between entities, value objects, and aggregates Repository and Unit of Work patterns for persistent storage Events, commands, and the message bus Command-query responsibility segregation (CQRS) Event-driven architecture and reactive microservices
Download or read book The Mac Hacker s Handbook written by Charlie Miller and published by John Wiley & Sons. This book was released on 2011-03-21 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: As more and more vulnerabilities are found in the Mac OS X (Leopard) operating system, security researchers are realizing the importance of developing proof-of-concept exploits for those vulnerabilities. This unique tome is the first book to uncover the flaws in the Mac OS X operating system—and how to deal with them. Written by two white hat hackers, this book is aimed at making vital information known so that you can find ways to secure your Mac OS X systems, and examines the sorts of attacks that are prevented by Leopard’s security defenses, what attacks aren’t, and how to best handle those weaknesses.
Download or read book High Performance Python written by Micha Gorelick and published by O'Reilly Media. This book was released on 2020-04-30 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python’s implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker
Download or read book Clean Code in Python written by Mariano Anaya and published by Packt Publishing Ltd. This book was released on 2021-01-06 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackle inefficiencies and errors the Pythonic way Key Features Enhance your coding skills using the new features introduced in Python 3.9 Implement the refactoring techniques and SOLID principles in Python Apply microservices to your legacy systems by implementing practical techniques Book Description Experienced professionals in every field face several instances of disorganization, poor readability, and testability due to unstructured code. With updated code and revised content aligned to the new features of Python 3.9, this second edition of Clean Code in Python will provide you with all the tools you need to overcome these obstacles and manage your projects successfully. The book begins by describing the basic elements of writing clean code and how it plays a key role in Python programming. You will learn about writing efficient and readable code using the Python standard library and best practices for software design. The book discusses object-oriented programming in Python and shows you how to use objects with descriptors and generators. It will also show you the design principles of software testing and how to resolve problems by implementing software design patterns in your code. In the concluding chapter, we break down a monolithic application into a microservices-based one starting from the code as the basis for a solid platform. By the end of this clean code book, you will be proficient in applying industry-approved coding practices to design clean, sustainable, and readable real-world Python code. What you will learn Set up a productive development environment by leveraging automatic tools Leverage the magic methods in Python to write better code, abstracting complexity away and encapsulating details Create advanced object-oriented designs using unique features of Python, such as descriptors Eliminate duplicated code by creating powerful abstractions using software engineering principles of object-oriented design Create Python-specific solutions using decorators and descriptors Refactor code effectively with the help of unit tests Build the foundations for solid architecture with a clean code base as its cornerstone Who this book is for This book is designed to benefit new as well as experienced programmers. It will appeal to team leads, software architects and senior software engineers who would like to write Pythonic code to save on costs and improve efficiency. The book assumes that you have a strong understanding of programming
Download or read book Impractical Python Projects written by Lee Vaughan and published by No Starch Press. This book was released on 2018-11-27 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Impractical Python Projects is a collection of fun and educational projects designed to entertain programmers while enhancing their Python skills. It picks up where the complete beginner books leave off, expanding on existing concepts and introducing new tools that you'll use every day. And to keep things interesting, each project includes a zany twist featuring historical incidents, pop culture references, and literary allusions. You'll flex your problem-solving skills and employ Python's many useful libraries to do things like: - Help James Bond crack a high-tech safe with a hill-climbing algorithm - Write haiku poems using Markov Chain Analysis - Use genetic algorithms to breed a race of gigantic rats - Crack the world's most successful military cipher using cryptanalysis - Derive the anagram, "I am Lord Voldemort" using linguistical sieves - Plan your parents' secure retirement with Monte Carlo simulation - Save the sorceress Zatanna from a stabby death using palingrams - Model the Milky Way and calculate our odds of detecting alien civilizations - Help the world's smartest woman win the Monty Hall problem argument - Reveal Jupiter's Great Red Spot using optical stacking - Save the head of Mary, Queen of Scots with steganography - Foil corporate security with invisible electronic ink Simulate volcanoes, map Mars, and more, all while gaining valuable experience using free modules like Tkinter, matplotlib, Cprofile, Pylint, Pygame, Pillow, and Python-Docx. Whether you're looking to pick up some new Python skills or just need a pick-me-up, you'll find endless educational, geeky fun with Impractical Python Projects.
Download or read book Kafka The Definitive Guide written by Neha Narkhede and published by "O'Reilly Media, Inc.". This book was released on 2017-08-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds. Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. Understand publish-subscribe messaging and how it fits in the big data ecosystem. Explore Kafka producers and consumers for writing and reading messages Understand Kafka patterns and use-case requirements to ensure reliable data delivery Get best practices for building data pipelines and applications with Kafka Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks Learn the most critical metrics among Kafka’s operational measurements Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems
Download or read book Effective Computation in Physics written by Anthony Scopatz and published by "O'Reilly Media, Inc.". This book was released on 2015-06-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Download or read book Guide to Competitive Programming written by Antti Laaksonen and published by Springer. This book was released on 2018-01-02 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts. Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization. This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.
Download or read book Practices of the Python Pro written by Dane Hillard and published by Simon and Schuster. This book was released on 2019-12-22 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Professional developers know the many benefits of writing application code that’s clean, well-organized, and easy to maintain. By learning and following established patterns and best practices, you can take your code and your career to a new level. With Practices of the Python Pro, you’ll learn to design professional-level, clean, easily maintainable software at scale using the incredibly popular programming language, Python. You’ll find easy-to-grok examples that use pseudocode and Python to introduce software development best practices, along with dozens of instantly useful techniques that will help you code like a pro. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Professional-quality code does more than just run without bugs. It’s clean, readable, and easy to maintain. To step up from a capable Python coder to a professional developer, you need to learn industry standards for coding style, application design, and development process. That’s where this book is indispensable. About the book Practices of the Python Pro teaches you to design and write professional-quality software that’s understandable, maintainable, and extensible. Dane Hillard is a Python pro who has helped many dozens of developers make this step, and he knows what it takes. With helpful examples and exercises, he teaches you when, why, and how to modularize your code, how to improve quality by reducing complexity, and much more. Embrace these core principles, and your code will become easier for you and others to read, maintain, and reuse. What's inside Organizing large Python projects Achieving the right levels of abstraction Writing clean, reusable code Inheritance and composition Considerations for testing and performance About the reader For readers familiar with the basics of Python, or another OO language. About the author Dane Hillard has spent the majority of his development career using Python to build web applications. Table of Contents: PART 1 WHY IT ALL MATTERS 1 ¦ The bigger picture PART 2 FOUNDATIONS OF DESIGN 2 ¦ Separation of concerns 3 ¦ Abstraction and encapsulation 4 ¦ Designing for high performance 5 ¦ Testing your software PART 3 NAILING DOWN LARGE SYSTEMS 6 ¦ Separation of concerns in practice 7 ¦ Extensibility and flexibility 8 ¦ The rules (and exceptions) of inheritance 9 ¦ Keeping things lightweight 10 ¦ Achieving loose coupling PART 4 WHAT’S NEXT? 11 ¦ Onward and upward
Download or read book Cython written by Kurt W. Smith and published by "O'Reilly Media, Inc.". This book was released on 2015-01-21 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build software that combines Python’s expressivity with the performance and control of C (and C++). It’s possible with Cython, the compiler and hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits-learn. In this practical guide, you’ll learn how to use Cython to improve Python’s performance—up to 3000x— and to wrap C and C++ libraries in Python with ease. Author Kurt Smith takes you through Cython’s capabilities, with sample code and in-depth practice exercises. If you’re just starting with Cython, or want to go deeper, you’ll learn how this language is an essential part of any performance-oriented Python programmer’s arsenal. Use Cython’s static typing to speed up Python code Gain hands-on experience using Cython features to boost your numeric-heavy Python Create new types with Cython—and see how fast object-oriented programming in Python can be Effectively organize Cython code into separate modules and packages without sacrificing performance Use Cython to give Pythonic interfaces to C and C++ libraries Optimize code with Cython’s runtime and compile-time profiling tools Use Cython’s prange function to parallelize loops transparently with OpenMP