Download or read book The Geometry of Special Relativity a Concise Course written by Norbert Dragon and published by Springer. This book was released on 2012-08-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this concise primer it is shown that, with simple diagrams, the phenomena of time dilatation, length contraction and Lorentz transformations can be deduced from the fact that in a vacuum one cannot distinguish physically straight and uniform motion from rest, and that the speed of light does not depend on the speed of either the source or the observer. The text proceeds to derive the important results of relativistic physics and to resolve its apparent paradoxes. A short introduction into the covariant formulation of electrodynamics is also given. This publication addresses, in particular, students of physics and mathematics in their final undergraduate year.
Download or read book The Geometry of Special Relativity a Concise Course written by Norbert Dragon and published by Springer Science & Business Media. This book was released on 2012-08-01 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this concise primer it is shown that, with simple diagrams, the phenomena of time dilatation, length contraction and Lorentz transformations can be deduced from the fact that in a vacuum one cannot distinguish physically straight and uniform motion from rest, and that the speed of light does not depend on the speed of either the source or the observer. The text proceeds to derive the important results of relativistic physics and to resolve its apparent paradoxes. A short introduction into the covariant formulation of electrodynamics is also given. This publication addresses, in particular, students of physics and mathematics in their final undergraduate year.
Download or read book The Geometry of Special Relativity written by Tevian Dray and published by CRC Press. This book was released on 2012-07-02 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometry of Special Relativity provides an introduction to special relativity that encourages readers to see beyond the formulas to the deeper geometric structure. The text treats the geometry of hyperbolas as the key to understanding special relativity. This approach replaces the ubiquitous γ symbol of most standard treatments with the appropriate hyperbolic trigonometric functions. In most cases, this not only simplifies the appearance of the formulas, but also emphasizes their geometric content in such a way as to make them almost obvious. Furthermore, many important relations, including the famous relativistic addition formula for velocities, follow directly from the appropriate trigonometric addition formulas. The book first describes the basic physics of special relativity to set the stage for the geometric treatment that follows. It then reviews properties of ordinary two-dimensional Euclidean space, expressed in terms of the usual circular trigonometric functions, before presenting a similar treatment of two-dimensional Minkowski space, expressed in terms of hyperbolic trigonometric functions. After covering special relativity again from the geometric point of view, the text discusses standard paradoxes, applications to relativistic mechanics, the relativistic unification of electricity and magnetism, and further steps leading to Einstein’s general theory of relativity. The book also briefly describes the further steps leading to Einstein’s general theory of relativity and then explores applications of hyperbola geometry to non-Euclidean geometry and calculus, including a geometric construction of the derivatives of trigonometric functions and the exponential function.
Download or read book General Relativity Without Calculus written by Jose Natario and published by Springer Science & Business Media. This book was released on 2011-07-30 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: “General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Download or read book The Geometry of Special Relativity written by Tevian Dray and published by CRC Press. This book was released on 2021-06-15 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents a particularly beautiful way of looking at special relativity. The author encourages students to see beyond the formulas to the deeper structure. The unification of space and time introduced by Einstein’s special theory of relativity is one of the cornerstones of the modern scientific description of the universe. Yet the unification is counterintuitive because we perceive time very differently from space. Even in relativity, time is not just another dimension, it is one with different properties The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Many important relations, including the famous relativistic addition formula for velocities, then follow directly from the appropriate (hyperbolic) trigonometric addition formulas. Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented, although occasional use is made of elementary differential calculus, and the chapter on electromagnetism assumes some more advanced knowledge. Changes to the Second Edition The treatment of Minkowski space and spacetime diagrams has been expanded. Several new topics have been added, including a geometric derivation of Lorentz transformations, a discussion of three-dimensional spacetime diagrams, and a brief geometric description of "area" and how it can be used to measure time and distance. Minor notational changes were made to avoid conflict with existing usage in the literature. Table of Contents Preface 1. Introduction. 2. The Physics of Special Relativity. 3. Circle Geometry. 4. Hyperbola Geometry. 5. The Geometry of Special Relativity. 6. Applications. 7. Problems III. 8. Paradoxes. 9. Relativistic Mechanics. 10. Problems II. 11. Relativistic Electromagnetism. 12. Problems III. 13. Beyond Special Relativity. 14. Three-Dimensional Spacetime Diagrams. 15. Minkowski Area via Light Boxes. 16. Hyperbolic Geometry. 17. Calculus. Bibliography. Author Biography Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.
Download or read book A Short Course in General Relativity written by James A. Foster and published by Springer Science & Business Media. This book was released on 2010-04-30 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.
Download or read book Introduction to Special Relativity written by James H. Smith and published by Courier Dover Publications. This book was released on 2016-03-22 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the year 1900, most of physics seemed to be encompassed in the two great theories of Newtonian mechanics and Maxwell's theory of electromagnetism. Unfortunately, there were inconsistencies between the two theories that seemed irreconcilable. Although many physicists struggled with the problem, it took the genius of Einstein to see that the inconsistencies were concerned not merely with mechanics and electromagnetism, but with our most elementary ideas of space and time. In the special theory of relativity, Einstein resolved these difficulties and profoundly altered our conception of the physical universe. Readers looking for a concise, well-written explanation of one of the most important theories in modern physics need search no further than this lucid undergraduate-level text. Replete with examples that make it especially suitable for self-study, the book assumes only a knowledge of algebra. Topics include classical relativity and the relativity postulate, time dilation, the twin paradox, momentum and energy, particles of zero mass, electric and magnetic fields and forces, and more.
Download or read book Very Special Relativity written by Sander Bais and published by Harvard University Press. This book was released on 2007 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Einstein's Special Theory of Relativity, first published in 1905, radically changed our understanding of the world. Familiar notions of space and time and energy were turned on their head, and our struggle with Einstein's counterintuitive explanation of these concepts was under way. The task is no easier today than it was a hundred years ago, but in this book Sander Bais has found an original and uniquely effective way to convey the fundamental ideas of Einstein's Special Theory. Bais's previous book, The Equations, was widely read and roundly praised for its clear and commonsense explanation of the math in physics. Very Special Relativity brings the same accessible approach to Einstein's theory. Using a series of easy-to-follow diagrams and employing only elementary high school geometry, Bais conducts readers through the quirks and quandaries of such fundamental concepts as simultaneity, causality, and time dilation. The diagrams also illustrate the difference between the Newtonian view, in which time was universal, and the Einsteinian, in which the speed of light is universal. Following Bais's straightforward sequence of simple, commonsense arguments, readers can tinker with the theory and its great paradoxes and, finally, arrive at a truly deep understanding of Einstein's interpretation of space and time. An intellectual journey into the heart of the Special Theory, the book offers an intimate look at the terms and ideas that define our reality.
Download or read book Special Relativity in General Frames written by Éric Gourgoulhon and published by Springer Science & Business Media. This book was released on 2013-08-20 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special relativity is the basis of many fields in modern physics: particle physics, quantum field theory, high-energy astrophysics, etc. This theory is presented here by adopting a four-dimensional point of view from the start. An outstanding feature of the book is that it doesn’t restrict itself to inertial frames but considers accelerated and rotating observers. It is thus possible to treat physical effects such as the Thomas precession or the Sagnac effect in a simple yet precise manner. In the final chapters, more advanced topics like tensorial fields in spacetime, exterior calculus and relativistic hydrodynamics are addressed. In the last, brief chapter the author gives a preview of gravity and shows where it becomes incompatible with Minkowsky spacetime. Well illustrated and enriched by many historical notes, this book also presents many applications of special relativity, ranging from particle physics (accelerators, particle collisions, quark-gluon plasma) to astrophysics (relativistic jets, active galactic nuclei), and including practical applications (Sagnac gyrometers, synchrotron radiation, GPS). In addition, the book provides some mathematical developments, such as the detailed analysis of the Lorentz group and its Lie algebra. The book is suitable for students in the third year of a physics degree or on a masters course, as well as researchers and any reader interested in relativity. Thanks to the geometric approach adopted, this book should also be beneficial for the study of general relativity. “A modern presentation of special relativity must put forward its essential structures, before illustrating them using concrete applications to specific dynamical problems. Such is the challenge (so successfully met!) of the beautiful book by Éric Gourgoulhon.” (excerpt from the Foreword by Thibault Damour)
Download or read book Spacetime and Geometry written by Sean M. Carroll and published by Cambridge University Press. This book was released on 2019-08-08 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.
Download or read book Special Relativity written by Michael Tsamparlis and published by Springer Science & Business Media. This book was released on 2010-05-17 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.
Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-14 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.
Download or read book General Relativity written by N.M.J. Woodhouse and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
Download or read book Beyond Pseudo Rotations in Pseudo Euclidean Spaces written by Abraham Ungar and published by Academic Press. This book was released on 2018-01-10 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces presents for the first time a unified study of the Lorentz transformation group SO(m, n) of signature (m, n), m, n ? N, which is fully analogous to the Lorentz group SO(1, 3) of Einstein's special theory of relativity. It is based on a novel parametric realization of pseudo-rotations by a vector-like parameter with two orientation parameters. The book is of interest to specialized researchers in the areas of algebra, geometry and mathematical physics, containing new results that suggest further exploration in these areas. - Introduces the study of generalized gyrogroups and gyrovector spaces - Develops new algebraic structures, bi-gyrogroups and bi-gyrovector spaces - Helps readers to surmount boundaries between algebra, geometry and physics - Assists readers to parametrize and describe the full set of generalized Lorentz transformations in a geometric way - Generalizes approaches from gyrogroups and gyrovector spaces to bi-gyrogroups and bi-gyrovector spaces with geometric entanglement
Download or read book The Geometry of Minkowski Spacetime written by Gregory L. Naber and published by Courier Corporation. This book was released on 2003-01-01 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
Download or read book From Special Relativity to Feynman Diagrams written by Riccardo D'Auria and published by Springer. This book was released on 2015-10-06 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.
Download or read book Alpine Physics Science In The Mountain Environment written by Valerio Faraoni and published by World Scientific. This book was released on 2019-05-23 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume applies physics and basic science to the mountain environment and is written in a non-technical language for curious laypeople who wonder why or how natural phenomena happen, and what their scientific explanation may be. The book discusses physics in a non-specialized way. Alpine Physics is mostly organized in categories relevant for non-scientists with an interest in alpine environments.Intuitive decision-making is often just grounded in plain common sense, to which mountain and nature lovers relate easily, especially when involving high-stakes decisions based on the estimation of such a treacherous environment. The book highlights how this intuitive decision-making can be complemented and augmented by basic scientific knowledge, and with better understanding it leads one to become a rational decision-maker.The book stimulates its readers to reason and discover why things are the way they are, at high altitudes, where many risk factors are aggravated, often dramatically, by steep gradients. The writing style marries that of the conventional science textbook and that of the informal North-American climbing guidebooks.