Download or read book The Elementary Differential Geometry of Plane Curves Classic Reprint written by R. H. Fowler and published by Forgotten Books. This book was released on 2018-01-05 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excerpt from The Elementary Differential Geometry of Plane Curves A limited selection of examples is given at the ends of the chapters. Besides their more Obvious function, these are intended to provide a summary of some of the more important extensions of the theorems proved in the text. References or sketches of a proof are therefore given in such cases, which should enable the reader to complete the proofs. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Download or read book The Elementary Differential Geometry of Plane Curves written by Ralph Howard Fowler and published by . This book was released on 1920 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Differential Geometry of Curves and Surfaces written by Shoshichi Kobayashi and published by Springer Nature. This book was released on 2019-11-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.
Download or read book Elementary Differential Geometry written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Elementary Differential Geometry of Plane Curves written by Ralph Howard Fowler and published by . This book was released on 1920 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Differential Geometry Of Curves And Surfaces written by Masaaki Umehara and published by World Scientific Publishing Company. This book was released on 2017-05-12 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'In a class populated by students who already have some exposure to the concept of a manifold, the presence of chapter 3 in this text may make for an unusual and interesting course. The primary function of this book will be as a text for a more conventional course in the classical theory of curves and surfaces.'MAA ReviewsThis engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well.Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates.Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities.In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.
Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.
Download or read book Differential Geometry of Curves and Surfaces written by Kristopher Tapp and published by Springer. This book was released on 2016-09-30 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Download or read book Differential Geometry written by Heinrich W. Guggenheimer and published by Courier Corporation. This book was released on 2012-04-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Download or read book Differential Geometry in Physics written by Gabriel Lugo and published by . This book was released on 2021-10-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.
Download or read book Plane Algebraic Curves written by Gerd Fischer and published by American Mathematical Soc.. This book was released on 2001 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help establish the geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher-dimensional varieties.
Download or read book The Elementary Differential Geometry of Plane Curves written by R. H. Fowler and published by Forgotten Books. This book was released on 2015-06-12 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excerpt from The Elementary Differential Geometry of Plane Curves This tract is intended to present a precise account of the elementary differential properties of plane curves. The matter contained is in no sense new, but a suitable connected treatment in the English language has not been available. As a result, a number of interesting misconceptions are current in English text books. It is sufficient to mention two somewhat striking examples, (a) According to the ordinary definition of an envelope, as the locus of the limits of points of intersection of neighbouring curves, a curve is not the envelope of its circles of curvature, for neighbouring circles of curvature do not intersect. (b) The definitions of an asymptote - (1) a straight line, the distance from which of a point on the curve tends to zero as the point tends to infinity; (2) the limit of a tangent to the curve, whose point of contact tends to infinity - are not equivalent. The curve may have an asymptote according to the former definition, and the tangent may exist at every point, but have no limit as its point of contact tends to infinity. The subjects dealt with, and the general method of treatment, are similar to those of the usual chapters on geometry in any Cours d' Analyse, except that in general plane curves alone are considered. At the same time extensions to three dimensions are made in a somewhat arbitrary selection of places, where the extension is immediate, and forms a natural commentary on the two dimensional work, or presents special points of interest (Frenet's formulae). To make such extensions systematically would make the tract too long. The subject matter being wholly classical, no attempt has been made to give full references to sources of information; the reader however is referred at most stages to the analogous treatment of the subject in the Cours or Traite d' Analyse of de la Vallée Poussin, Goursat, Jordan or Picard, works to which the author is much indebted. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Download or read book Plane Algebraic Curves written by Harold Hilton and published by . This book was released on 1920 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elementary Differential Geometry written by A.N. Pressley and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressley assumes the reader knows the main results of multivariate calculus and concentrates on the theory of the study of surfaces. Used for courses on surface geometry, it includes intersting and in-depth examples and goes into the subject in great detail and vigour. The book will cover three-dimensional Euclidean space only, and takes the whole book to cover the material and treat it as a subject in its own right.
Download or read book Shape Interrogation for Computer Aided Design and Manufacturing written by Nicholas M. Patrikalakis and published by Springer Science & Business Media. This book was released on 2002-02-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.