EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Effects of Land Use Change on the Numerical Modeling of Regional Climate and Watershed Runoff in the Great Lakes Region

Download or read book The Effects of Land Use Change on the Numerical Modeling of Regional Climate and Watershed Runoff in the Great Lakes Region written by Michael Barlage and published by . This book was released on 2001 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fast Processes in Large Scale Atmospheric Models

Download or read book Fast Processes in Large Scale Atmospheric Models written by Yangang Liu and published by John Wiley & Sons. This book was released on 2023-12-11 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large-Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical development of the parameterization of fast processes in numerical models Different types of major sub-grid processes and their parameterizations Efforts to unify the treatment of individual processes and their interactions Top-down versus bottom-up approaches across multiple scales Measurement techniques, observational studies, and frameworks for model evaluation Emerging challenges, new opportunities, and future research directions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Hydroclimatology of the Great Lakes Region of North America

Download or read book Hydroclimatology of the Great Lakes Region of North America written by Julie A. Winkler and published by Frontiers Media SA. This book was released on 2022-11-14 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book American Doctoral Dissertations

Download or read book American Doctoral Dissertations written by and published by . This book was released on 2000 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Terrestrial Water Cycle and Climate Change

Download or read book Terrestrial Water Cycle and Climate Change written by Qiuhong Tang and published by John Wiley & Sons. This book was released on 2016-09-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Terrestrial Water Cycle: Natural and Human-Induced Changes is a comprehensive volume that investigates the changes in the terrestrial water cycle and the natural and anthropogenic factors that cause these changes. This volume brings together recent progress and achievements in large-scale hydrological observations and numerical simulations, specifically in areas such as in situ measurement network, satellite remote sensing and hydrological modeling. Our goal is to extend and deepen our understanding of the changes in the terrestrial water cycle and to shed light on the mechanisms of the changes and their consequences in water resources and human well-being in the context of global change. Volume highlights include: Overview of the changes in the terrestrial water cycle Human alterations of the terrestrial water cycle Recent advances in hydrological measurement and observation Integrated modeling of the terrestrial water cycle The Terrestrial Water Cycle: Natural and Human-Induced Changes will be a valuable resource for students and professionals in the fields of hydrology, water resources, climate change, ecology, geophysics, and geographic sciences. The book will also be attractive to those who have general interests in the terrestrial water cycle, including how and why the cycle changes.

Book Ecohydrologic Impacts of Climate and Land Use Changes on Watershed Systems

Download or read book Ecohydrologic Impacts of Climate and Land Use Changes on Watershed Systems written by Paul A. Ekness and published by . This book was released on 2013 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintaining flows and quality of water resources is critical to support ecosystem services and consumptive needs. Understanding impacts of changes in climate and land use on ecohydrologic processes in a watershed is vital to sustaining water resources for multiple uses. This study completes a continental and regional scale assessment using statistical and simulation modeling to investigate ecohydrologic impacts within watershed systems. Watersheds across the continental United States have diverse hydrogeomorphic characters, mean temperatures, soil moistures, precipitation and evaporation patterns that influence runoff processes. Changes in climate affect runoff by impacting available soil moisture, evaporation, precipitation and vegetative patterns. A one percent increase in annual soil moisture may cause a five percent increase in runoff in watersheds across the continent. Low soil moisture and high temperatures influence runoff patterns in specific regions. Spring runoff is increased by the influence Spring soil moisture, Winter and Spring evaporation, and Winter and Spring evaporation. Spring runoff is decreased by increases in Winter and Spring temperatures and increases in the vegetation index. Winter runoff is affected by maximum vegetative index, temperature, soil moisture, evaporation and precipitation. Contributing factors to runoff are influenced by geomorphic and seasonal variations requiring strategies that are site-specific and use system-wide information. Regional scale watershed analysis investigates the influence of landscape metrics on temporal streamflow processes in multiple gauged watersheds in Massachusetts, U.S.A. Time of concentration, recession coefficient, base flow index, and peak flow are hydrologic metrics used to relate to landscape metrics derived using FRAGSTAT software. Peak flow increases with increasing perimeter-area fractal dimensions, and Contagion index and decreases as Landscape Shape Index increases. There was an increasing trend in the fractal dimension over time indicative of more complex shape of patches in watershed. Base flow index and recession coefficient fluctuated from low to high decreasing recently. This could be indicative of open space legislation, conservation efforts and reforestation within the state in the last ten years. Coastal systems provide valuable ecosystem services and are vulnerable to impacts of changes in climate and continental land use patterns. Effects of land use and climate change on runoff, suspended sediments, total nitrogen and total phosphorus are simulated for coastal watersheds around the Boston Bay ecosystem. The SWAT (Soil and Water Assessment Tool) model, a continuous-time, semi distributed, process-based model, is used to simulate the watershed ecohydrologic process affecting coastal bodies. Urbanization in watersheds increased runoff by as much as 80% from the baseline. Land use change poses a major threat to water quality impacts affecting coastal ecosystems. Total nitrogen increased average of 53.8% with conservative changes in climate and land use. Total phosphorus increased an average of 57.3% with conservative changes in land use and climate change. Climate change alone causes up to 40% increase in runoff and when combined with a 3.25% increase in urban development runoff increased an average of 114%. Coastal ecosystems are impacted by nutrient runoff from watersheds. Continued urbanization and changes in climate will increase total nitrogen, total phosphorus and suspended sediments in coastal ecosystems. Continental scale runoff is affected by soil moisture and vegetative cover. Cover crops, low tillage farm practices and natural vegetation contribute to less runoff. Developing policies that encourage protection of soil structure could minimize runoff and aid in maintaining sustainable water resources. Best Management Practices and Low impact development at the national level with continued stormwater legislation directed towards sustainable land use policy will improve water quantity and quality. Fragmentation observed in Massachusetts increases the number of urban parcels and decreases the size of forested areas. Faster runoff patterns are observed but recent land management may be changing this runoff pattern. Municipal and state zoning ordinance to preserve open space and large forest patches will restrict urban growth to specific regions of a watershed. This could improve quantities of water available to ecosystems. Increases in total nitrogen, phosphorus and suspended sediments to coastal ecosystems can be minimized with use of riparian buffers and Best Management Practices within coastal watersheds. Urbanization and climate change threatens coastal ecosystems and national policy to preserve and restrict development of coastal areas will preserve coastal ecosystem services.

Book PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM

Download or read book PREDICTING THE IMPACTS OF CLIMATE CHANGE ON THE GREAT LAKES WATER LEVELS USING A FULLY COUPLED 3D REGIONAL MODELING SYSTEM written by and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : The Great Lakes of North America are the largest surface freshwater system in the world and many ecosystems, industries, and coastal processes are sensitive to the changes in their water levels. The recent changes in the Great Lakes climate and water levels have particularly highlighted the importance of water level prediction. The water levels of the Great Lakes are primarily governed by the net basin supplies (NBS) of each lake which are the sum of over-lake precipitation and basin runoff minus lake evaporation. Recent studies have utilized Regional Climate Models (RCMs) with a fully coupled one-dimensional (1D) lake model to predict the future NBS, and the Coordinated Great Lakes Regulating and Routing Model (CGLRRM) has been used to predict the future water levels. However, multiple studies have emphasized the need for a three-dimensional (3D) lake model to accurately simulate the Great Lakes water budget. Therefore, in this study, we used the Great Lakes-Atmosphere Regional Model (GLARM) along with the Large Basin Runoff Model (LBRM) and CGLRRM to predict the changes in NBS and water levels by the mid- and late twenty-first century. GLARM is a 3D regional climate modeling system for the Great Lakes region that is fully coupled to a 3D hydrodynamic lake and ice model. This is the first study to use such an advanced model for water level prediction in the Great Lakes. We found that both annual over-lake precipitation and basin runoff are most likely to increase into the future. We also found that annual lake evaporation is most likely to decrease in Lake Superior but increase in all the other lakes. We posit that the decreases in evaporation are due to decreased wind speed over the lakes and decreased difference between saturated and actual specific humidity over the lakes. Our predicted changes in the three components of NBS would lead to mostly increased NBS and water levels in the future. The ensemble average of our predicted water level changes for Lake Superior, Michigan-Huron, and Erie are +0.14 m, +0.37 m, and +0.23 m by the mid-twenty-first century, respectively, and +0.47 m, +1.29 m, and +0.80 m by the late twenty-first century, respectively. However, due to the multiple sources of uncertainties associated with climate modeling and predictions, the water level predictions from this study should not be viewed as exact predictions. These predictions are unique to our model configuration and methodology. Other studies can easily predict different water level changes through the use of different models and methodologies. Therefore, more predictions from advanced modeling systems like GLARM are needed to generate a consensus on future water level changes in the Great Lakes.

Book Selected Water Resources Abstracts

Download or read book Selected Water Resources Abstracts written by and published by . This book was released on 1991 with total page 962 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 1044 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selected Water Resources Abstracts

Download or read book Selected Water Resources Abstracts written by and published by . This book was released on 1991 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Potential Climate Change Effects on Great Lakes Hydrodynamics and Water Quality

Download or read book Potential Climate Change Effects on Great Lakes Hydrodynamics and Water Quality written by David C. L. Lam and published by ASCE Publications. This book was released on 1999-01-01 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report provides a state-of-the-art review of the climate change effects on lake hydrodynamics and water quality. Most of the engineering cases in this book deal with the ability of existing infrastructure to cope with extreme weather conditions. The case studies are intended to illustrate the advancement in modeling research on lake hydrodynamics, thermal stratification, pollutant transport, and water quality by highlighting the climate change aspects in the application of these techniques. Topics include climate and lake responses, lake thermodynamics, large-scale circulation, wind-waves on large lakes, great lakes ice cover, and water quality.

Book Colorado River Basin Water Management

Download or read book Colorado River Basin Water Management written by National Research Council and published by National Academies Press. This book was released on 2007-05-30 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent studies of past climate and streamflow conditions have broadened understanding of long-term water availability in the Colorado River, revealing many periods when streamflow was lower than at any time in the past 100 years of recorded flows. That information, along with two important trends-a rapid increase in urban populations in the West and significant climate warming in the region-will require that water managers prepare for possible reductions in water supplies that cannot be fully averted through traditional means. Colorado River Basin Water Management assesses existing scientific information, including temperature and streamflow records, tree-ring based reconstructions, and climate model projections, and how it relates to Colorado River water supplies and demands, water management, and drought preparedness. The book concludes that successful adjustments to new conditions will entail strong and sustained cooperation among the seven Colorado River basin states and recommends conducting a comprehensive basinwide study of urban water practices that can be used to help improve planning for future droughts and water shortages.

Book Landscape Dynamics  Soils and Hydrological Processes in Varied Climates

Download or read book Landscape Dynamics Soils and Hydrological Processes in Varied Climates written by Assefa M. Melesse and published by Springer. This book was released on 2015-07-21 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the processes governing the dynamics of landscapes, soils and sediments, water and energy under different climatic regions using studies conducted in varied climatic zones including arid, semi-arid, humid and wet regions. The spatiotemporal availability of the processes and fluxes and their linkage to the environment, land, soil and water management are presented at various scales. Spatial scales including laboratory, field, watershed, river basin and regions are represented. The effect of tillage operations and land management on soil physical characteristics and soil moisture is discussed. The book has 35 chapters in seven sections: 1) Landscape and Land Cover Dynamics, 2) Rainfall-Runoff Processes, 3) Floods and Hydrological Processes 4) Groundwater Flow and Aquifer Management, 5) Sediment Dynamics and Soil Management, 6) Climate change impact on vegetation, sediment and water dynamics, and 7) Water and Watershed Management.

Book Combined Effects of Land Use Change and Climate Change on Soil Loss and Water Bablance Variables

Download or read book Combined Effects of Land Use Change and Climate Change on Soil Loss and Water Bablance Variables written by Yashar Makhtoumi and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Changes in water balance variables such as runoff and evapotranspiration (ET) are essential in planning and management of land and water resources. Two major factors affecting these variables are climate and land use change. There is a need to investigate the combined effects of land use and climate change at local scales. Towards that end, the hydrological processes were modeled using the Soil and Water Assessment Tool (SWAT) to investigate the impacts of climate and land use change in Southeast US (Makhtoumi, Li, Ibeanusi, and Chen, 2020). We integrated land use based on the Shared Socioeconomic Pathways (SSPs) with future climate data (CMIP5) to study the combined effects on hydrological response of Upper Choctawhatchee Watershed (UCW.) Future rainfall and air temperature, for two time periods (2040-2069 and 2070-2099), were obtained using Global Climate Models to provide SWAT with the climatic forcing in order to project water balance variables. The simulation was carried out under two radiative forcing pathways of Representative Concentration Pathways (RCP4.5 and RCP6.0.) Our results indicate that increased imperviousness resulted from urbanization has more impact on runoff than that of projected changes in climate. Impacts on water balance variables (runoff, ET, discharge) differed seasonally. Results showed peak surface runoff experienced changes under both emission scenarios in June up to five times increase. Among the water balance variables, ET as the least dominant pathways for water loss, showed the modest changes with the largest decrease during fall and summer. Projections indicated more frequent extreme behavior regarding precipitation, peak surface runoff, water yield (WY) and ET, during midcentury. Discharge was estimated to increase through the year and the highest changes were expected during summer and fall with 186.3% increase in November under RCP6.0. Relying on rainfall for farming along with reduced agricultural land use (11.8%) and increased urban area (47%) and population growth, would likely make the water use efficiency critical. In our second study, we focused on the combined impact of land use and climate change on soil erosion at local scales. Topsoil loss is a widespread environmental concern causing adverse impacts on natural and human systems. Severe weather accompanied with human activities can exacerbate this issue degrading soil health and consequently accelerating global and regional food insecurity and injustice. Erosion impairs soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients including soil carbon and nitrogen. Although, temporal properties of a rainfall event have meaningful implications for soil erosion, spatial heterogeneity of a rainfall contributes substantially and cannot be overlooked. Therefore, in the third chapter we investigated soil loss using SWAT in Northern Mississippi. First, we built a hydrological model and calibrated it for both flow and sediment discharge. Then we developed land use and climate scenarios. The land use scenarios include farming (soybean and corn) and grazing practices. The climate scenarios comprise of four different precipitation time series, S0 which no concentration is forced, while S1, S2, and S3 have 3%, 6%, and 9% concentration in top four rainy days, respectively. We coupled the land use and climate scenarios and evaluated a small watershed (Hickahala Creek Watershed) in response. We classified the subbasins into different classes of soil loss severity and then determined the hotspots for soil loss at subbasin scale. Our result suggests that the resolution of rainfall data is crucial in studying the soil loss. We found that pasture management by itself can manifold soil loss, and if accompanied with extreme rainfalls, soil loss accelerates impacting different subbasins each time. We found that spatial heterogeneity of extreme rainfalls (ERs) can be more substantial than land use in individual extreme rainfalls; however, over a year, soil moisture and type of the management practices (grazing and farming) could contribute more to soil loss. Soil loss can go as high as 350 (ton/ha/yr) under the ERs. Adding only the management practices can increase erosion 3600%. Under S1 parts of watershed yield more than 150 ton/ha/yr (extremely severe). Under S2 and S3 more soil loss hotspots emerge yielding approximately 200 ton/ha/yr. We found that in the hotspots, up to 10% increase in CI can increase annual soil loss up to 75%. Single ER can generate up to 35% of annual soil loss. Under one ER event hotspot subbasins can lose up to 160 ton/ha/day (subbasin 15). The results reveal that adding grazing and farming (S0) under one ER event can increase soil loss by 95%. 32% and 80% increase in rainfall amount in one ER event can increase soil loss by 94% and 285% respectively. Our results suggested the importance of site-specific managements to mitigate soil loss and all the consequences. It is essential to consider the varying sensitivity of subbasins for the sustainability of agricultural landscapes.

Book Exploring the Impact of Climate and Land Cover Change on Regional Hydrology in a Snowmelt dominated Watershed

Download or read book Exploring the Impact of Climate and Land Cover Change on Regional Hydrology in a Snowmelt dominated Watershed written by Amy Steimke and published by . This book was released on 2017 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Seasonally snow-dominated, mountainous watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as climate is altered. Associated changes in watershed vegetation cover further affect the runoff responses of watersheds, from altering evapotranspiration rates to changing surface energy fluxes, and there exists a need to incorporate land cover change in hydrologic modeling studies. However, few land cover projections exist at the scale needed for watershed studies, and current models may be unable to simulate key interactions that occur between land cover and hydrologic processes. To help address this gap in the literature, we explored the impacts of climate and land cover change on hydrologic regimes in the Upper Boise River Basin, Idaho. Using a multiagent simulation framework, Envision, we built a hydrologic model, calibrated it to historic streamflow and snowpack observations, and ran it to year 2100 under six diverse climate scenarios. Under present land cover conditions, average annual discharge increased by midcentury (2040-2069) with 13% more runoff than historical (1950-2009) across all climate scenarios, with ranges from 6-24% of increase. Runoff timing was altered, with center of timing of streamflow occurring 4-17 days earlier by midcentury. Our modeled snowpack was more sensitive to warming at lower elevations, and maximum snow water equivalent decreased and occurred 13-44 days earlier by midcentury. Utilizing metrics applicable to local water managers, we see the date that junior water rights holders begin to be curtailed up to 14 days earlier across all models by the end of the century, with one model showing this could occur over a month earlier. These results suggest that current methods of water rights accounting and management may need to be revised moving into the future. To test the sensitivity of our hydrologic model to changes in land cover, we selected a projected future land cover from the FORE-SCE (FOREcasting SCEnarios of land-use change) model. Our future land cover produced less evapotranspiration and more runoff, which stemmed from misclassification of high elevation regions between the FORE-SCE model and our initial land cover dataset, due to changes in the NLCD (National Land Cover Database) classification methodology. Additionally, FORE-SCE does not explicitly model wildfire or vegetative response to climate, both of which will likely be major drivers of landscape change in the mountainous, forested, western U.S., potentially making it insufficient for land cover projections in these areas. With evapotranspiration being the only parameter changing between land cover types in our hydrologic model, we were unable to capture the totality of hydrologic response to land cover change and other models may be better suited for such studies. This study highlights the necessity for better land cover projections in natural ecosystems that are attuned to both natural (e.g., climate, disturbance) and anthropogenic (e.g. management, invasive species) drivers of change, as well as better feedback in hydrologic models between the land surface and hydrological processes."--Boise State University ScholarWorks.

Book Numerical Simulation of the Effect of Land Cover and Climate Changes on Hydrologic Regimes in an Inland Pacific Northwest Watershed

Download or read book Numerical Simulation of the Effect of Land Cover and Climate Changes on Hydrologic Regimes in an Inland Pacific Northwest Watershed written by Enhao Du and published by . This book was released on 2010 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial and temporal patterns of canopy alterations suggest that completely clear-cutting the entire watershed would increase runoff by 73% and 5 th percentile streamflows by 66%. The hydrologic effects were less pronounced relative to the degree of canopy removal in a partial-cut scenario where 50% of the canopy was removed across the entire watershed. Streamflow regimes approached baseline conditions after approximately 25 years of forest regeneration, and indicated almost complete recovery after 50 years. Gradually patch-cutting 5% of the watershed area every 6 years caused water yield to increase by 17% and remain very stable after 20 years. Hydrologic responses to various spatial harvest patterns were relatively similar.