EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The DSMC Method

Download or read book The DSMC Method written by G. A. Bird and published by . This book was released on 2013-08-19 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct Simulation Monte Carlo is a well-established method for the computer simulation of a gas flow at the molecular level. While there is a limit to the size of the flow-field with respect to the molecular mean free path, personal computers now allow solutions well into the continuum flow regime. The method can be applied to basic problems in gas dynamics and practical applications range from microelectromechanics systems (MEMS) to astrophysical flows. DSMC calculations have assisted in the design of vacuum systems, including those for semiconductor manufacture, and of many space vehicles and missions. The method was introduced by the author fifty years ago and it has been the subject of two monographs that have been published by Oxford University Press. It is now twenty years since the second of these was written and, since that time, most DSMC procedures have been superseded or significantly modified. In addition, visual interactive DSMC application programs have been developed that have proved to be readily applicable by non-specialists to a wide variety of practical problems. The computational variables are set automatically within the code and the programs report whether or not the criteria for a good calculation have been met. This book is concerned with the theory behind the current DSMC molecular models and procedures, with their integration into general purpose programs, and with the validation and demonstration of these programs. The DSMC and associated programs, including all source codes, can be freely downloaded through links that are provided in the book. The main accompanying program is simply called the "DSMC program" and, in future versions of the book, it will be applicable to homogeneous (or zero-dimensional) flows through to three-dimensional flow. All DSMC simulations are time-accurate unsteady calculations, but the flow may become steady at large times. The current version of the DSMC code is applicable only to zero and one-dimensional flows and the older DS2V code is employed for the two-dimensional validation and demonstration cases. It is because of this temporary use of the older and well-proven program that the DS2V source code is made freely available for the first time. Most of the homogeneous flow cases are validation studies, but include internal mode relaxation studies and spontaneous and forced ignition leading to combustion in an oxygen-hydrogen mixture. The one-dimensional cases include the structure of a re-entry shock wave that takes into account electronic excitation as well as dissociation, recombination and exchange reactions. They also include a spherically imploding shock wave and a spherical blast wave. The two-dimensional and axially-symmetric demonstration cases range from a typical MEMS flow to aspects of the flow around rotating planets. Intermediate cases include the formation and structure of a combustion wave, a vacuum pump driven by thermal creep, a typical vacuum processing chamber, and the flow around a typical re-entry vehicle

Book Nonequilibrium Gas Dynamics and Molecular Simulation

Download or read book Nonequilibrium Gas Dynamics and Molecular Simulation written by Iain D. Boyd and published by Cambridge University Press. This book was released on 2017-03-23 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index

Book Rarefied Gas Dynamics

    Book Details:
  • Author : Ching Shen
  • Publisher : Springer Science & Business Media
  • Release : 2006-03-30
  • ISBN : 3540272305
  • Pages : 406 pages

Download or read book Rarefied Gas Dynamics written by Ching Shen and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.

Book Advances in Multiphysics Simulation and Experimental Testing of Mems

Download or read book Advances in Multiphysics Simulation and Experimental Testing of Mems written by Attilio Frangi and published by Imperial College Press. This book was released on 2008 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume takes a much needed multiphysical approach to the numerical and experimental evaluation of the mechanical properties of MEMS and NEMS. The contributed chapters present many of the most recent developments in fields ranging from microfluids and damping to structural analysis, topology optimization and nanoscale simulations. The book responds to a growing need emerging in academia and industry to merge different areas of expertise towards a unified design and analysis of MEMS and NEMS.

Book Molecular Gas Dynamics and the Direct Simulation of Gas Flows

Download or read book Molecular Gas Dynamics and the Direct Simulation of Gas Flows written by G. A. Bird and published by Oxford University Press on Demand. This book was released on 1994 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of a highly regarded text covers all the recent research developments in gas dynamics including the direct simulation Monte Carlo method (DSMC).

Book Molecular Gas Dynamics

    Book Details:
  • Author : Yoshio Sone
  • Publisher : Springer Science & Business Media
  • Release : 2007-10-16
  • ISBN : 081764573X
  • Pages : 667 pages

Download or read book Molecular Gas Dynamics written by Yoshio Sone and published by Springer Science & Business Media. This book was released on 2007-10-16 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier–Stokes effects are demonstrated for typical examples—Bénard and Taylor–Couette problems—in the context of a new framework. A new type of ghost effect is also discussed.

Book Stochastic Numerics for the Boltzmann Equation

Download or read book Stochastic Numerics for the Boltzmann Equation written by Sergej Rjasanow and published by Springer Science & Business Media. This book was released on 2005-11-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic numerical methods play an important role in large scale computations in the applied sciences. The first goal of this book is to give a mathematical description of classical direct simulation Monte Carlo (DSMC) procedures for rarefied gases, using the theory of Markov processes as a unifying framework. The second goal is a systematic treatment of an extension of DSMC, called stochastic weighted particle method. This method includes several new features, which are introduced for the purpose of variance reduction (rare event simulation). Rigorous convergence results as well as detailed numerical studies are presented.

Book Plasma Simulations by Example

Download or read book Plasma Simulations by Example written by Lubos Brieda and published by CRC Press. This book was released on 2019-12-13 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of plasmas is crucial in improving our understanding of the universe, and they are being increasingly utilised in key technologies such as spacecraft thrusters, plasma medicine, and fusion energy. Providing readers with an easy to follow set of examples that clearly illustrate how simulation codes are written, this book guides readers through how to develop C++ computer codes for simulating plasmas primarily with the kinetic Particle in Cell (PIC) method. This text will be invaluable to advanced undergraduates and graduate students in physics and engineering looking to learn how to put the theory to the test. Features: Provides a step-by-step introduction to plasma simulations with easy to follow examples Discusses the electrostatic and electromagnetic Particle in Cell (PIC) method on structured and unstructured meshes, magnetohydrodynamics (MHD), and Vlasov solvers Covered topics include Direct Simulation Monte Carlo (DSMC) collisions, surface interactions, axisymmetry, and parallelization strategies. Lubos Brieda has over 15 years of experience developing plasma and gas simulation codes for electric propulsion, contamination transport, and plasma-surface interactions. As part of his master’s research work, he developed a 3D ES-PIC electric propulsion plume code, Draco, which is to this date utilized by government labs and private aerospace firms to study plasma thruster plumes. His Ph.D, obtained in 2012 from George Washington University, USA, focused on a multi-scale model for Hall thrusters utilizing fluid-kinetic hybrid PIC codes. He has since then been involved in numerous projects involving development and the use of plasma simulation tools. Since 2014 he has been teaching online courses on plasma simulations through his website: particleincell.com.

Book Molecular Gas Dynamics

Download or read book Molecular Gas Dynamics written by G. A. Bird and published by Oxford University Press, USA. This book was released on 1976 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.

Book Parallel Computational Fluid Dynamics 2007

Download or read book Parallel Computational Fluid Dynamics 2007 written by Ismail H. Tuncer and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

Book Macroscopic Transport Equations for Rarefied Gas Flows

Download or read book Macroscopic Transport Equations for Rarefied Gas Flows written by Henning Struchtrup and published by Springer Science & Business Media. This book was released on 2006-06-15 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.

Book Application of the DSMC Method to High Density Micro flows

Download or read book Application of the DSMC Method to High Density Micro flows written by Evgeny V. Titov and published by . This book was released on 2007 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stardust Final Conference

Download or read book Stardust Final Conference written by Massimiliano Vasile and published by Springer. This book was released on 2018-02-10 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and Attitude Determination Impact Prediction and Risk Analysis, Mission Analysis-Proximity Operations, Active Removal/Deflection Control Under Uncertainty, Active Removal/Deflection Technologies, and Asteroid Manipulation

Book Shock Wave Boundary Layer Interactions

Download or read book Shock Wave Boundary Layer Interactions written by Holger Babinsky and published by Cambridge University Press. This book was released on 2011-09-12 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Book 31st International Symposium on Shock Waves 1

Download or read book 31st International Symposium on Shock Waves 1 written by Akihiro Sasoh and published by Springer. This book was released on 2019-03-21 with total page 1188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.

Book A Review

    Book Details:
  • Author : K. L. Guo
  • Publisher :
  • Release : 2001
  • ISBN :
  • Pages : pages

Download or read book A Review written by K. L. Guo and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Droplet Interactions and Spray Processes

Download or read book Droplet Interactions and Spray Processes written by Grazia Lamanna and published by Springer Nature. This book was released on 2020-03-14 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a selection of contributions to the DIPSI workshop 2019 (Droplet Impact Phenomena & Spray Investigations) as well as recent progress of the Int. Research Training Group “DROPIT”.The DIPSI workshop, which is now at its thirteenth edition, represents an important opportunity to share recent knowledge on droplets and sprays in a variety of research fields and industrial applications. The research training group “DROPIT” is focused on droplet interaction technologies where microscopic effects influence strongly macroscopic behavior. This requires the inclusion of interface kinetics and/or a detailed analysis of surface microstructures. Normally, complicated technical processes cover the underlying basic mechanisms, and therefore, progress in the overall process modelling can hardly be gained. Therefore, DROPIT focuses on the underlying basic processes. This is done by investigating different spatial and/or temporal scales of the problems and by linking them through a multi-scale approach. In addition, multi-physics are required to understand e.g. problems for droplet-wall interactions, where porous structures are involved.