Download or read book Relativistic Electronic Structure Theory written by and published by Elsevier. This book was released on 2004-03-05 with total page 805 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of relativistic electronic structure theory is generally not part of theoretical chemistry education, and is therefore not covered in most quantum chemistry textbooks. This is due to the fact that only in the last two decades have we learned about the importance of relativistic effects in the chemistry of heavy and superheavy elements. Developments in computer hardware together with sophisticated computer algorithms make it now possible to perform four-component relativistic calculations for larger molecules. Two-component and scalar all-electron relativistic schemes are also becoming part of standard ab-initio and density functional program packages for molecules and the solid state. The second volume of this two-part book series is therefore devoted to applications in this area of quantum chemistry and physics of atoms, molecules and the solid state. Part 1 was devoted to fundamental aspects of relativistic electronic structure theory whereas Part 2 covers more of the applications side. This volume opens with a section on the Chemistry of the Superheavy Elements and contains chapters dealing with Accurate Relativistic Fock-Space Calculations for Many-Electron Atoms, Accurate Relativistic Calculations Including QED, Parity-Violation Effects in Molecules, Accurate Determination of Electric Field Gradients for Heavy Atoms and Molecules, Two-Component Relativistic Effective Core Potential Calculations for Molecules, Relativistic Ab-Initio Model Potential Calculations for Molecules and Embedded Clusters, Relativistic Pseudopotential Calculations for Electronic Excited States, Relativistic Effects on NMR Chemical Shifts, Relativistic Density Functional Calculations on Small Molecules, Quantum Chemistry with the Douglas-Kroll-Hess Approach to Relativistic Density Functional Theory, and Relativistic Solid State Calculations.- Comprehensive publication which focuses on new developments in relativistic quantum electronic structure theory- Many leaders from the field of theoretical chemistry have contributed to the TCC series- Will no doubt become a standard text for scientists in this field.
Download or read book Semiempirical Methods of Electronic Structure Calculation written by Gerald Segal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: If one reflects upon the range of chemical problems accessible to the current quantum theoretical methods for calculations on the electronic structure of molecules, one is immediately struck by the rather narrow limits imposed by economic and numerical feasibility. Most of the systems with which experimental photochemists actually work are beyond the grasp of ab initio methods due to the presence of a few reasonably large aromatic ring systems. Potential energy surfaces for all but the smallest molecules are extremely expensive to produce, even over a restricted group of the possible degrees of freedom, and molecules containing the higher elements of the periodic table remain virtually untouched due to the large numbers of electrons involved. Almost the entire class of molecules of real biological interest is simply out of the question. In general, the theoretician is reduced to model systems of variable appositeness in most of these fields. The fundamental problem, from a basic computational point of view, is that large molecules require large numbers of basis functions, whether Slater type orbitals or Gaussian functions suitably contracted, to provide even a modestly accurate description of the molecular electronic environment. This leads to the necessity of dealing with very large matrices and numbers of integrals within the Hartree-Fock approximation and quickly becomes both numerically difficult and uneconomic.
Download or read book Relativistic Electronic Structure Theory Fundamentals written by and published by Elsevier. This book was released on 2002-11-22 with total page 947 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of this two part series is concerned with the fundamental aspects of relativistic quantum theory, outlining the enormous progress made in the last twenty years in this field. The aim was to create a book such that researchers who become interested in this exciting new field find it useful as a textbook, and do not have to rely on a rather large number of specialized papers published in this area.·No title is currently available that deals with new developments in relativistic quantum electronic structure theory·Interesting and relevant to graduate students in chemistry and physics as well as to all researchers in the field of quantum chemistry·As treatment of heavy elements becomes more important, there will be a constant demand for this title
Download or read book Electronic Structure Calculations for Solids and Molecules written by Jorge Kohanoff and published by Cambridge University Press. This book was released on 2006-06-29 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.
Download or read book Lectures On Methods Of Electronic Structure Calculations Proceedings Of The Miniworkshop On Methods Of Electronic Structure Calculations And Working Group On Disordered Alloys written by Ole Krogh Andersen and published by World Scientific. This book was released on 1995-02-23 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in the density functional theory and the methods of electronic structure calculations have made it possible to carry out ab-initio studies of a variety of materials efficiently and at a predictable level. This book covers many of those state-of-the-art developments and their applications to ordered and disordered materials, surfaces and interfaces and clusters, etc.
Download or read book Electronic Structure and the Properties of Solids written by Walter A. Harrison and published by Courier Corporation. This book was released on 2012-03-08 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.
Download or read book Single site Green Function of the Dirac Equation for Full potential Electron Scattering written by Pascal Kordt and published by Forschungszentrum Jülich. This book was released on 2012 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Electronic Structure Calculations on Graphics Processing Units written by Ross C. Walker and published by John Wiley & Sons. This book was released on 2016-02-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.
Download or read book Introduction to Relativistic Quantum Chemistry written by Kenneth G. Dyall and published by Oxford University Press. This book was released on 2007-04-19 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.
Download or read book Numerical Determination of the Electronic Structure of Atoms Diatomic and Polyatomic Molecules written by M. Defranceschi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanical calculations in physics, chemistry and biology are widely recognized as useful interpretative and predictive tools. Unfortunately, they are plagued by unfavorable convergence limitations due to the use of finite linear combinations of basis functions. With the current computer technologies, there is a possible way out to the situation by solving numerically the corresponding wave equations. The present interest and need for numerical determination of electronic structure of atoms, diatomic and poly atomic molecules led us to organize a NATO-ARW devoted to these questions. The aim of the meeting was to provide a review of the state of the art about techniques and applications. The organizing committee consisted of Drs. G. Berthier, P. Claverie, M. Defranceschi, J. Delhalle, H.J. Monkhorst and P. Pyykk6. It was a great sorrow for us to be informed in January 88 of the death of Professor P. Claverie who supported so enthusiastically the idea of having such a meeting organized. The NATO Advanced Research Worshop on : " Numerical Determination of the Electronic Structure of Atoms, Diatomic and Poly atomic Molecules" was held at Versailles (France) from April 17th till April 22th, 1988.
Download or read book Electronic Structure written by Richard M. Martin and published by Cambridge University Press. This book was released on 2020-08-27 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of electronic structure of materials is at a momentous stage, with new computational methods and advances in basic theory. Many properties of materials can be determined from the fundamental equations, and electronic structure theory is now an integral part of research in physics, chemistry, materials science and other fields. This book provides a unified exposition of the theory and methods, with emphasis on understanding each essential component. New in the second edition are recent advances in density functional theory, an introduction to Berry phases and topological insulators explained in terms of elementary band theory, and many new examples of applications. Graduate students and research scientists will find careful explanations with references to original papers, pertinent reviews, and accessible books. Each chapter includes a short list of the most relevant works and exercises that reveal salient points and challenge the reader.
Download or read book High Dimensional Partial Differential Equations in Science and Engineering written by André D. Bandrauk and published by American Mathematical Soc.. This book was released on 2007 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-dimensional spatio-temporal partial differential equations are a major challenge to scientific computing of the future. Up to now deemed prohibitive, they have recently become manageable by combining recent developments in numerical techniques, appropriate computer implementations, and the use of computers with parallel and even massively parallel architectures. This opens new perspectives in many fields of applications. Kinetic plasma physics equations, the many body Schrodinger equation, Dirac and Maxwell equations for molecular electronic structures and nuclear dynamic computations, options pricing equations in mathematical finance, as well as Fokker-Planck and fluid dynamics equations for complex fluids, are examples of equations that can now be handled. The objective of this volume is to bring together contributions by experts of international stature in that broad spectrum of areas to confront their approaches and possibly bring out common problem formulations and research directions in the numerical solutions of high-dimensional partial differential equations in various fields of science and engineering with special emphasis on chemistry and physics. Information for our distributors: Titles in this series are co-published with the Centre de Recherches Mathematiques.
Download or read book The Chemistry of the Actinide and Transactinide Elements 3rd ed Volumes 1 5 written by L.R. Morss and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 4059 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.
Download or read book Structure and Properties of Clusters from a few Atoms to Nanoparticles written by George Maroulis and published by CRC Press. This book was released on 2006-10-27 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles. Special emphasis is given to bringing forth new insights on the structure and properties of these systems with an eye towards potential applications in Materials Science. Overal, the volume presents to the readers an amazing wealth of new results. Particular subjects include water clusters, Silicon, Iron, Nickel and Gold clusters, carbon-titanium microclusters and nanoparticles, fullerenes, carbon nanotubes, chiral carbon nanotubes, boron nanoclusters and more.
Download or read book Modern Quantum Chemistry written by Attila Szabo and published by Courier Corporation. This book was released on 2012-06-08 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.
Download or read book Electronic Structure and Physical Properties of Solids written by Hugues Dreysse and published by Springer. This book was released on 2008-01-11 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.
Download or read book Computational Methods in Lanthanide and Actinide Chemistry written by Michael Dolg and published by John Wiley & Sons. This book was released on 2015-02-17 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The f-elements and their compounds often possess an unusually complex electronic structure, governed by the high number of electronic states arising from open f-shells as well as large relativistic and electron correlation effects. A correct theoretical description of these elements poses the highest challenges to theory. Computational Methods in Lanthanide and Actinide Chemistry summarizes state-of-the-art electronic structure methods applicable for quantum chemical calculations of lanthanide and actinide systems and presents a broad overview of their most recent applications to atoms, molecules and solids. The book contains sixteen chapters, written by leading experts in method development as well as in theoretical investigations of f-element systems. Topics covered include: Relativistic configuration interaction calculations for lanthanide and actinide anions Study of actinides by relativistic coupled cluster methods Relativistic all-electron approaches to the study of f- element chemistry Relativistic pseudopotentials and their applications Gaussian basis sets for lanthanide and actinide elements Applied computational actinide chemistry This book will serve as a comprehensive reference work for quantum chemists and computational chemists, both those already working in, and those planning to enter the field of quantum chemistry for f-elements. Experimentalists will also find important information concerning the capabilities of modern quantum chemical methods to assist in the interpretation or even to predict the outcome of their experiments.