EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Development Of An Adaptive Driving Simulator

Download or read book The Development Of An Adaptive Driving Simulator written by Sarah Tudor and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Human testing was performed and through the use of a survey, feedback about the system was obtained. Changes were made to the simulator using the feedback obtained and further testing showed that those changes improved the simulator. The driving simulator showed the capability to provide dynamic feedback and, therefore, may be more realistic and beneficial than current static adaptive driving simulators. The dynamic adaptive driving simulator developed may improve driving training and performance of persons with spinal cord injuries. Future work will include more human testing. The dynamic feedback provided through the system's moving platform and virtual camera movement will be optimized in order to perform similarly to a real car. Testing will also be completed with and without the dynamics from the moving platform to see how this type of feedback affects the user's driving ability in the virtual environment.

Book Distributed Moving Base Driving Simulators

Download or read book Distributed Moving Base Driving Simulators written by Anders Andersson and published by Linköping University Electronic Press. This book was released on 2019-04-30 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of new functionality and smart systems for different types of vehicles is accelerating with the advent of new emerging technologies such as connected and autonomous vehicles. To ensure that these new systems and functions work as intended, flexible and credible evaluation tools are necessary. One example of this type of tool is a driving simulator, which can be used for testing new and existing vehicle concepts and driver support systems. When a driver in a driving simulator operates it in the same way as they would in actual traffic, you get a realistic evaluation of what you want to investigate. Two advantages of a driving simulator are (1.) that you can repeat the same situation several times over a short period of time, and (2.) you can study driver reactions during dangerous situations that could result in serious injuries if they occurred in the real world. An important component of a driving simulator is the vehicle model, i.e., the model that describes how the vehicle reacts to its surroundings and driver inputs. To increase the simulator realism or the computational performance, it is possible to divide the vehicle model into subsystems that run on different computers that are connected in a network. A subsystem can also be replaced with hardware using so-called hardware-in-the-loop simulation, and can then be connected to the rest of the vehicle model using a specified interface. The technique of dividing a model into smaller subsystems running on separate nodes that communicate through a network is called distributed simulation. This thesis investigates if and how a distributed simulator design might facilitate the maintenance and new development required for a driving simulator to be able to keep up with the increasing pace of vehicle development. For this purpose, three different distributed simulator solutions have been designed, built, and analyzed with the aim of constructing distributed simulators, including external hardware, where the simulation achieves the same degree of realism as with a traditional driving simulator. One of these simulator solutions has been used to create a parameterized powertrain model that can be configured to represent any of a number of different vehicles. Furthermore, the driver's driving task is combined with the powertrain model to monitor deviations. After the powertrain model was created, subsystems from a simulator solution and the powertrain model have been transferred to a Modelica environment. The goal is to create a framework for requirement testing that guarantees sufficient realism, also for a distributed driving simulation. The results show that the distributed simulators we have developed work well overall with satisfactory performance. It is important to manage the vehicle model and how it is connected to a distributed system. In the distributed driveline simulator setup, the network delays were so small that they could be ignored, i.e., they did not affect the driving experience. However, if one gradually increases the delays, a driver in the distributed simulator will change his/her behavior. The impact of communication latency on a distributed simulator also depends on the simulator application, where different usages of the simulator, i.e., different simulator studies, will have different demands. We believe that many simulator studies could be performed using a distributed setup. One issue is how modifications to the system affect the vehicle model and the desired behavior. This leads to the need for methodology for managing model requirements. In order to detect model deviations in the simulator environment, a monitoring aid has been implemented to help notify test managers when a model behaves strangely or is driven outside of its validated region. Since the availability of distributed laboratory equipment can be limited, the possibility of using Modelica (which is an equation-based and object-oriented programming language) for simulating subsystems is also examined. Implementation of the model in Modelica has also been extended with requirements management, and in this work a framework is proposed for automatically evaluating the model in a tool.

Book Handbook of Driving Simulation for Engineering  Medicine  and Psychology

Download or read book Handbook of Driving Simulation for Engineering Medicine and Psychology written by Donald L. Fisher and published by CRC Press. This book was released on 2011-04-25 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective use of driving simulators requires considerable technical and methodological skill along with considerable background knowledge. Acquiring the requisite knowledge and skills can be extraordinarily time consuming, yet there has been no single convenient and comprehensive source of information on the driving simulation research being conduc

Book Development of an Open source Driving Simulator to Evaluate Driver Behavior in Autonomous Environments

Download or read book Development of an Open source Driving Simulator to Evaluate Driver Behavior in Autonomous Environments written by Prashant Arora and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this thesis is to develop an open-source highway driving simulator setup that allows different levels of autonomy in traffic, exposure to different traffic situations, and enables different simulated driver responses in terms of longitudinal and lateral vehicle control. This thesis is particularly motivated by the recent FHWA interest in the study of human factors while driving in autonomous environments on highways. Technological advancements like Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) aim to reduce traffic congestion by providing different levels of autonomy to the driver. However, the drivers acceptance of these technologies has not been quantified yet and needs further investigation. Driving simulators have gained more attention in the past few years being one of the only tools available to safely test human responses to advanced driving automation or driving-assist situations. Recent advancements in driving simulation technology allow scenario authoring to create dynamic situations, allow multiple simulations to be connected to each other, and provide the ability to connect hardware to simulations to enable hardware-in-the-loop driving evaluations using simulators. Using this modern technology, mixed traffic environments are modeled to enable the assessment of driver behavior in autonomous environments and to understand the need and type of information to be conveyed. The virtual platform is designed to be visually and geometrically realistic using AASHTO highway design guidelines. Traffic simulations are scripted in the scenarios allowing mixed autonomous environment with manual, ACC and CACC vehicles.

Book Driving Simulation

Download or read book Driving Simulation written by Hichem Arioui and published by John Wiley & Sons. This book was released on 2013-12-02 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Passive and active safety systems (ABS, ESP, safety belts, airbags, etc.) represent a major advance in terms of safety in motoring. They are increasingly developed and installed in cars and are beginning to appear in twowheelers. It is clear that these systems have proven efficient, although there is no information about their actual operation by current users. The authors of this book present a state of the art on safety systems and assistance to driving and their two-wheeled counterparts. The main components constituting a driving simulator are described, followed by a classification of robotic architectures. Then, a literature review on driving simulators and two-wheeled vehicles is presented. The aim of the book is to point out the differences of perspectives between motor vehicles and motorcycles to identify relevant indicators to help in choosing the mechanical architecture of the motorcycle simulator and appropriate controls. Contents 1. Driving Simulation. 2. Architecture of Driving Simulators. 3. Dynamics of Two-Wheeled Vehicles. 4. Two-Wheeled Riding Simulator: From Design to Control.

Book Extensions for Distributed Moving Base Driving Simulators

Download or read book Extensions for Distributed Moving Base Driving Simulators written by Anders Andersson and published by Linköping University Electronic Press. This book was released on 2017-03-30 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern vehicles are complex systems. Different design stages for such a complex system include evaluation using models and submodels, hardware-in-the-loop systems and complete vehicles. Once a vehicle is delivered to the market evaluation continues by the public. One kind of tool that can be used during many stages of a vehicle lifecycle is driving simulators. The use of driving simulators with a human driver is commonly focused on driver behavior. In a high fidelity moving base driving simulator it is possible to provide realistic and repetitive driving situations using distinctive features such as: physical modelling of driven vehicle, a moving base, a physical cabin interface and an audio and visual representation of the driving environment. A desired but difficult goal to achieve using a moving base driving simulator is to have behavioral validity. In other words, A driver in a moving base driving simulator should have the same driving behavior as he or she would have during the same driving task in a real vehicle.". In this thesis the focus is on high fidelity moving base driving simulators. The main target is to improve the behavior validity or to maintain behavior validity while adding complexity to the simulator. One main assumption in this thesis is that systems closer to the final product provide better accuracy and are perceived better if properly integrated. Thus, the approach in this thesis is to try to ease incorporation of such systems using combinations of the methods hardware-in-the-loop and distributed simulation. Hardware-in-the-loop is a method where hardware is interfaced into a software controlled environment/simulation. Distributed simulation is a method where parts of a simulation at physically different locations are connected together. For some simulator laboratories distributed simulation is the only feasible option since some hardware cannot be moved in an easy way. Results presented in this thesis show that a complete vehicle or hardware-in-the-loop test laboratory can successfully be connected to a moving base driving simulator. Further, it is demonstrated that using a framework for distributed simulation eases communication and integration due to standardized interfaces. One identified potential problem is complexity in interface wrappers when integrating hardware-in-the-loop in a distributed simulation framework. From this aspect, it is important to consider the model design and the intersections between software and hardware models. Another important issue discussed is the increased delay in overhead time when using a framework for distributed simulation.

Book An Electromechanical Synchronization of Driving Simulator and Adaptive Driving Aide for Training Persons with Disabilities

Download or read book An Electromechanical Synchronization of Driving Simulator and Adaptive Driving Aide for Training Persons with Disabilities written by Rufael Berhane and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Cars have become necessities of our daily life and are especially important to people with disability because they extend their range of activity and allow participation in a social life. Sometimes driving a normal car is impossible for individuals with severe disability and they require additional driving aide. However, it is dangerous to send these individuals on the road without giving them special training on driving vehicles using an adaptive aide. Nowadays there are a number of driving simulators that train disabled persons but none of them have joystick-enabled training that controls both steering, gas and break pedal. This necessitates the design of a method and a system which helps a person with disabilities learn how to operate a joystick-enabled vehicle, by using a combination of an advanced vehicle interface system, which is a driving aide known as Advanced Electronic Vehicle Interface Technology (AVEIT) and virtual reality driving simulator known as Simulator Systems International (SSI). This thesis focuses on the mechanism that synchronizes both AVEIT and SSI systems. This was achieved by designing a mechanical and electrical system that serves as a means of transferring the action between the AVEIT and SSI system. The mechanical system used for this purpose consists of two coupler units attached to AVEIT and SSI each combined together by the electrical system. As the user operates the joystick, the action of AVEIT is transferred to the SSI system by the help of the electromechanical system. The design provides compatibility between the AVEIT and SSI system which makes them convenient for training persons with disability.

Book Driving in Virtual Reality

Download or read book Driving in Virtual Reality written by Björn Blissing and published by Linköping University Electronic Press. This book was released on 2020-09-02 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades, there has been a substantial increase in the development of complex active safety systems for automotive vehicles. These systems need to be tested for verification and validation to ensure that the system intervenes in the correct situations using the correct measures. There are multiple methods available to perform such testing. Software-in-the-loop and hardware-in-the-loop testing offer effective driverless testing. Other methods increase the fidelity by including human drivers, such as driving simulators and experiments performed at test tracks. This thesis examines vehicle-in-the-loop testing, an innovative method where the driver of a real vehicle wears a head-mounted display that displays virtual targets. This method combines the benefits of driving simulators with the benefits of using a real vehicle on a test track. Driving simulators offer repeatability, safety, and the possibility of complex interactions between actors. In contrast, the real vehicle provides the correct vehicle dynamics and motion feedback. There is a need to know how the technology behind the method might influence the results from vehicle-in-the-loop testing. Two techniques for vehicle-in-the-loop systems are studied. The first involves video-see through head-mounted displays, where the focus of the research is on the effects of visual latency on driving behavior. The results show that lateral driving behavior changes with added latency, but longitudinal behavior appears unaffected. The second system uses an opaque head-mounted display in an entirely virtual world. The research shows that this solution changes speed perception and results in a significant degradation in performance of tasks dependent on visual acuity. This research presents results that are relevant to consider when developing vehicle-in-the-loop platforms. The results are also applicable when choosing scenarios for this test method. Dagens fordon innehåller fler och fler säkerhetssystem. Vissa av dessa system ger varningar i potentiellt kritiska trafiksituationer. Det finns också mer komplexa system som tillfälligt kan ta kontroll över fordonet för att förhindra en olycka eller åtminstone mildra effekterna. Komplexiteten hos dessa system innebär att man måste genomföra omfattande tester. Både för att se att systemen reagerar vid rätt tidpunkt, men också för att se att valet av åtgärd är korrekt. Det finns många olika sätt att testa dessa system. Man börjar vanligtvis med simuleringar av programvara och hårdvara. Därefter kan systemet introduceras i ett fordon för att se vilka effekter systemet har när det interagerar med en riktig förare. Att utföra tester med förare ställer dock höga säkerhetskrav, och det är ofta svårt att samordna komplexa trafiksituationer på en testbana. Traditionellt har körsimulatorer varit ett naturligt alternativ eftersom de kan utföra komplexa scenarier i en säker miljö. Denna avhandling undersöker en testmetod där man utrustar föraren med en virtual reality-display. Genom att presentera omvärlden med hjälp av virtual reality, så kan man genomföra scenarion som tidigare varit omöjliga på en testbana. Det kan dock finnas inbyggda begränsningar i virtual reality tekniken som kan påverka körbeteendet. Det är därför viktigt att hitta och kvantifiera dessa effekter för att kunna lita på resultaten från testmetoden. Att känna till dessa effekter på körbeteendet dessutom kan hjälpa till att avgöra vilka typer av scenarier som är lämpade för denna testmetod. Det är också viktig information för att avgöra var man bör fokusera den tekniska utvecklingen av testutrustningen.

Book A Design Framework for Developing a Reconfigurable Driving Simulator

Download or read book A Design Framework for Developing a Reconfigurable Driving Simulator written by Bassem Hassan and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driving simulators have been used successfully in various application fields for decades. They vary widely in their structure, fidelity, complexity and cost. Nowadays, driving simulators are usually custom-designed for a specific task and they typically have a fixed structure. Nevertheless, using the driving simulator in an application field, such as the development of the Advanced Driver Assistance Systems (ADAS), requires several variants of the driving simulator. Therefore, there is a need to develop a reconfigurable driving simulator which allows its operator to easily create different variants without in-depth expertise in the system structure. In order to solve this challenge, a Design Framework for Developing a Reconfigurable Driving Simulator has been developed. The design framework consists of a procedure model and a configuration tool. The pro-cedure model describes the required development phases, the entire tasks of each phase and the used methods in the development. The configuration tool organizes the driving simulators solution elements and allows its operator to create different variants of the driving simulator by selecting a combination of the solution elements, which are like building blocks. The design framework is validated by developing an ADAS reconfigu-rable driving simulator and by creating three variants of this driving simulator. ; eng

Book NADS

Download or read book NADS written by and published by . This book was released on 2003 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Development and Clinical Trial of a Driving Simulator for the Handicapped

Download or read book The Development and Clinical Trial of a Driving Simulator for the Handicapped written by J. Ku and published by . This book was released on 2002 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Adaptive Lateral Preview Driver Model

Download or read book An Adaptive Lateral Preview Driver Model written by A. Y. Ungoren and published by . This book was released on 2005 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful modelling and simulation of driver behaviour is important for the current industrial thrust of computer-based vehicle development. The main contribution of this paper is the development of an adaptive lateral preview human driver model. This driver model template has a few parameters that can be adjusted to simulate steering actions of human drivers with different driving styles. In other words, this model template can be used in the design process of vehicles and active safety systems to assess their performance under average drivers as well as atypical drivers. We assume that the drivers, regardless of their style, have driven the vehicle long enough to establish an accurate internal model of the vehicle. The proposed driver model is developed using the adaptive predictive control (APC) framework. Three key features are included in the APC framework: use of preview information, internal model identification and weight adjustment to simulate different driving styles. The driver uses predicted vehicle information in a future window to determine the optimal steering action. A tunable parameter is defined to assign relative importance of lateral displacement and yaw error in the cost function to be optimized. The model is tuned to fit three representative drivers obtained from driving simulator data taken from 22 human drivers.

Book Life System Modeling and Simulation

Download or read book Life System Modeling and Simulation written by Minrui Fei and published by Springer Science & Business Media. This book was released on 2007-08-30 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of a two-volume work that constitutes the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2007, held in Shanghai, China, September 2007. Coverage includes modeling and simulation of societies and collective behavior, computational methods and intelligence in biomechanical systems, tissue engineering and clinical bioengineering, computational intelligence in bioinformatics and biometrics, and brain stimulation.

Book Smart Driver Training Simulation

Download or read book Smart Driver Training Simulation written by Wolf Dieter Käppler and published by Springer Science & Business Media. This book was released on 2008-07-02 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology improves, so does the sophistication of driving simulators. Meanwhile, as the volume of traffic increases, simulators are being seen as a real addition to the driving trainer’s armory. This book explains the basics of education and training using simulators and their ability to improve safety on our streets. Käppler shows that they can be used for documentation, data acquisition, data analysis, evaluation, and modeling as well as for simple training.

Book Testing and Evaluation of a Novel Virtual Reality Integrated Adaptive Driving System

Download or read book Testing and Evaluation of a Novel Virtual Reality Integrated Adaptive Driving System written by Matthew R. Fowler and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: Virtual simulators have proven to be extremely effective tools for training individuals for tasks that might otherwise be cost-prohibitive, dangerous, or impractical. One advantage of using a virtual simulator is that it provides a safe environment for emergency scenarios. For many years the United States military and NASA have used simulators, including those affixed with drive-by-wire (DBW) controls, effectively and efficiently to train subjects in a variety of ways. A DBW system utilizes electrical circuits to actuate servo motors from a given input signal to achieve a desired output. In DBW systems the output is not directly mechanically connected to a control surface (steering, acceleration, deceleration, etc.); usually, the input controller is linked by electrical wires to a localized servo motor where direct control can be given. This project is aimed at developing a novel simulator for a future training program using DBW systems that caters specifically to individuals who currently use or will be using for the first time vehicle modifications in order to drive and maintain their independence. Many of these individuals use one or a combination of powered steering, acceleration, braking, or secondary DBW controls to drive. The simulator integrates a virtual training environment and advanced electronic vehicle interface technology (AEVIT) DBW controls (4-way joystick, gas-brake lever/small zero-effort steering wheel). In a 30 participant study of three groups (able-bodied individuals, elderly individuals, and individuals with disability), it was found that training with a DBW joystick steering system will require more instruction and simulator practice time than a gas-brake lever/small steering wheel combination (GB/S) to obtain a similar level of competency. Drivers using the joystick completed predetermined driving courses in longer times, at slower speeds, with more errors than the other DBW system. On average, the reaction time to a stopping signal was fastest with the gas-brake lever at 0.54 seconds. Reaction times for the standard vehicle controls and the joystick were 0.741 and 0.677 seconds respectively. It was noted that reaction times using DBW controls were shorter overall. When driving in traffic, drivers committed 4.9, 5.1, and 8.3 driving infractions per minute using standard vehicle controls (No Drive by Wire, (NDBW)), the gas/brake and steering system, and joystick system respectively. Most drivers felt that the GB/S system was easier to learn, easier to operate, safer, and more reliable than the joystick system.

Book Shaping Automated Driving to Achieve Societal Mobility Needs

Download or read book Shaping Automated Driving to Achieve Societal Mobility Needs written by Peter Moertl and published by Springer Nature. This book was released on with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: