EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Cauchy Problem for Solutions of Elliptic Equations

Download or read book The Cauchy Problem for Solutions of Elliptic Equations written by Nikolaĭ Nikolaevich Tarkhanov and published by De Gruyter Akademie Forschung. This book was released on 1995 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an attempt to bring together various topics in partial differential equations related to the Cauchy problem for solutions of an elliptic equation. Ever since Hadamard, the Cauchy problem for solutions of elliptic equations has been known to be ill-posed.

Book Second Order Equations of Elliptic and Parabolic Type

Download or read book Second Order Equations of Elliptic and Parabolic Type written by E. M. Landis and published by American Mathematical Soc.. This book was released on 1997-12-02 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most books on elliptic and parabolic equations emphasize existence and uniqueness of solutions. By contrast, this book focuses on the qualitative properties of solutions. In addition to the discussion of classical results for equations with smooth coefficients (Schauder estimates and the solvability of the Dirichlet problem for elliptic equations; the Dirichlet problem for the heat equation), the book describes properties of solutions to second order elliptic and parabolic equations with measurable coefficients near the boundary and at infinity. The book presents a fine elementary introduction to the theory of elliptic and parabolic equations of second order. The precise and clear exposition is suitable for graduate students as well as for research mathematicians who want to get acquainted with this area of the theory of partial differential equations.

Book Nonlinear Parabolic and Elliptic Equations

Download or read book Nonlinear Parabolic and Elliptic Equations written by C.V. Pao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.

Book The Analysis of Solutions of Elliptic Equations

Download or read book The Analysis of Solutions of Elliptic Equations written by Nikolai Tarkhanov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a continuation of my book "Parametrix Method in the Theory of Differential Complexes" (see [291]). There, we considered complexes of differential operators between sections of vector bundles and we strived more than for details. Although there are many applications to for maximal generality overdetermined systems, such an approach left me with a certain feeling of dissat- faction, especially since a large number of interesting consequences can be obtained without a great effort. The present book is conceived as an attempt to shed some light on these new applications. We consider, as a rule, differential operators having a simple structure on open subsets of Rn. Currently, this area is not being investigated very actively, possibly because it is already very highly developed actively (cf. for example the book of Palamodov [213]). However, even in this (well studied) situation the general ideas from [291] allow us to obtain new results in the qualitative theory of differential equations and frequently in definitive form. The greater part of the material presented is related to applications of the L- rent series for a solution of a system of differential equations, which is a convenient way of writing the Green formula. The culminating application is an analog of the theorem of Vitushkin [303] for uniform and mean approximation by solutions of an elliptic system. Somewhat afield are several questions on ill-posedness, but the parametrix method enables us to obtain here a series of hitherto unknown facts.

Book Elliptic and Parabolic Equations with Discontinuous Coefficients

Download or read book Elliptic and Parabolic Equations with Discontinuous Coefficients written by Antonino Maugeri and published by Wiley-VCH. This book was released on 2000-12-13 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book unifies the different approaches in studying elliptic and parabolic partial differential equations with discontinuous coefficients. To the enlarging market of researchers in applied sciences, mathematics and physics, it gives concrete answers to questions suggested by non-linear models. Providing an up-to date survey on the results concerning elliptic and parabolic operators on a high level, the authors serve the reader in doing further research. Being themselves active researchers in the field, the authors describe both on the level of good examples and precise analysis, the crucial role played by such requirements on the coefficients as the Cordes condition, Campanato's nearness condition, and vanishing mean oscillation condition. They present the newest results on the basic boundary value problems for operators with VMO coefficients and non-linear operators with discontinuous coefficients and state a lot of open problems in the field.

Book Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems

Download or read book Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems written by Carlos E. Kenig and published by American Mathematical Soc.. This book was released on 1994 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there has been a great deal of activity in the study of boundary value problems with minimal smoothness assumptions on the coefficients or on the boundary of the domain in question. These problems are of interest both because of their theoretical importance and the implications for applications, and they have turned out to have profound and fascinating connections with many areas of analysis. Techniques from harmonic analysis have proved to be extremely useful in these studies, both as concrete tools in establishing theorems and as models which suggest what kind of result might be true. Kenig describes these developments and connections for the study of classical boundary value problems on Lipschitz domains and for the corresponding problems for second order elliptic equations in divergence form. He also points out many interesting problems in this area which remain open.

Book Applications of Elliptic Carleman Inequalities to Cauchy and Inverse Problems

Download or read book Applications of Elliptic Carleman Inequalities to Cauchy and Inverse Problems written by Mourad Choulli and published by Springer. This book was released on 2016-06-03 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Avner Friedman and published by Courier Corporation. This book was released on 2008-11-24 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Largely self-contained, this three-part treatment focuses on elliptic and evolution equations, concluding with a series of independent topics directly related to the methods and results of the preceding sections. 1969 edition.

Book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane  PMS 48

Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane PMS 48 written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Book Pointwise Bounds for Solutions of the Cauchy Problem for Elliptic Equations

Download or read book Pointwise Bounds for Solutions of the Cauchy Problem for Elliptic Equations written by George Norman Trytten and published by . This book was released on 1962 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: An analysis is presented which deals with a technique for approximating the solution to a Cauchy problem for a geneal second-order elliptic patil differential equation defined in an N-dimensional region D. The method is based upon the determination of an a priori bound for the value of an arbitrary function u at a point P in D in terms of the values of u and its gradient on the cauchy surface andA FUNCTIONAL OF THE ELLIPTIC OPERATOR APPLIED TO U. (Author).

Book Progress in Partial Differential Equations

Download or read book Progress in Partial Differential Equations written by Michael Reissig and published by Springer Science & Business Media. This book was released on 2013-03-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The readers will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity)

Book Lectures on Cauchy s Problem in Linear Partial Differential Equations

Download or read book Lectures on Cauchy s Problem in Linear Partial Differential Equations written by Jacques Hadamard and published by . This book was released on 1923 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods for Partial Differential Equations

Download or read book Methods for Partial Differential Equations written by Marcelo R. Ebert and published by Birkhäuser. This book was released on 2018-02-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Book Inverse Problems for Partial Differential Equations

Download or read book Inverse Problems for Partial Differential Equations written by Victor Isakov and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Book The Navier Stokes Equations

Download or read book The Navier Stokes Equations written by Hermann Sohr and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Book Geometric Methods in Inverse Problems and PDE Control

Download or read book Geometric Methods in Inverse Problems and PDE Control written by Chrisopher B. Croke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.

Book Lectures on Elliptic Boundary Value Problems

Download or read book Lectures on Elliptic Boundary Value Problems written by Shmuel Agmon and published by American Mathematical Soc.. This book was released on 2010-02-03 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.