EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Texture and Anisotropy

    Book Details:
  • Author : U. F. Kocks
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 9780521794206
  • Pages : 672 pages

Download or read book Texture and Anisotropy written by U. F. Kocks and published by Cambridge University Press. This book was released on 2000-08-15 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: A successful book covering an important area of materials science, now available in paperback.

Book Texture and Anisotropy of Polycrystals II

Download or read book Texture and Anisotropy of Polycrystals II written by Claude Esling and published by Trans Tech Publications Ltd. This book was released on 2005-07-15 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters CPCI-S (WoS). Natural, as well as man-made, materials are often assumed to behave uniformly, exhibiting equal strength in all directions, because most of them have a polycrystalline structure. The anisotropy of the individual crystals, however, is smoothed out only in the presence of a large number of grains having a random distribution of orientations. In reality, there usually remains an anisotropy due to the existence of preferred orientations. Its magnitude depends upon the statistical distribution of grain orientations – the "crystallographic texture" or, more simply, the texture. –This governs the extremes, of the physical property of interest, which a single crystal of the material under consideration can exhibit in directional tests. Local variations in texture, as well as the arrangements and types of grain/phase boundaries, may give rise to inhomogeneous material properties. The texture also carries with it information on the history of a material’s processing, use and misuse. A knowledge of the texture is a prerequisite for all quantitative techniques of materials characterization, and is based upon the interpretation of diffraction-peak intensities. It is also necessary to model the relationships between microstructural features and physical or mechanical properties. Therefore, the texture is of great value for quality control in a wide range of industrial applications, and in basic materials research.

Book Texture and Anisotropy of Polycrystals III

Download or read book Texture and Anisotropy of Polycrystals III written by Helmut Klein and published by Trans Tech Publications Ltd. This book was released on 2010-02-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The great majority of solid-state materials – natural as well as man-made ones – have a polycrystalline structure. They consist of crystallites having various sizes, shapes and crystallographic orientations. Because of the anisotropy of crystal properties, the material as a whole may also be anisotropic if the orientation distribution of the crystallites is not random. Furthermore, because of the differently oriented anisotropies of neighbouring crystals, the material is also micro-inhomogeneous. Macroscopic anisotropy and micro-inhomogeneity are thus fundamental properties of all polycrystalline materials. Therefore, the study of preferred crystal orientations, or crystallographic texture, is of major interest in research and industrial applications. Analysis of the crystal texture is now a well-established tool for quality control and failure analysis in industry, as well as in academic research, because of the ready availability of commercial equipment and refined computer programs.

Book Texture and Anisotropy of Polycrystals

Download or read book Texture and Anisotropy of Polycrystals written by Flavio Deflorian and published by Trans Tech Publications Ltd. This book was released on 1998-02-16 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters CPCI-S (WoS). Preferred crystal orientations and their statistical distribution – the polycrystalline 'texture' – are of major scientific interest and are of great importance in a wide range of industrial applications. The aim of this book is to monitor the rapid progress made in this field during the last few years. Texture analysis has expanded beyond its traditional domain of cubic metals and alloys to encompass virtually all crystalline, and even partially crystalline, materials - including natural as well as man-made ones such as geological samples, minerals, ceramics, polymers, composites, low-symmetry materials, thin films and layers. The main objectives are to obtain a better understanding and control of the properties of anisotropic materials (as related to bulk, grain or grain boundary structures), recrystallization and grain growth, deformation textures, and correlations between internal stress, composition and texture.

Book Texture and Anisotropy of Polycrystals II

Download or read book Texture and Anisotropy of Polycrystals II written by C. Esling and published by . This book was released on 2005 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural, as well as man-made, materials are often assumed to behave uniformly, exhibiting equal strength in all directions, because most of them have a polycrystalline structure. The anisotropy of the individual crystals, however, is smoothed out only in the presence of a large number of grains having a random distribution of orientations. In reality, there usually remains an anisotropy due to the existence of preferred orientations. Its magnitude depends upon the statistical distribution of grain orientations - the crystallographic texture or, more simply, the texture. -This governs the extremes, of the physical property of interest, which a single crystal of the material under consideration can exhibit in directional tests. Local variations in texture, as well as the arrangements and types of grain/phase boundaries, may give rise to inhomogeneous material properties. The texture also carries with it information on the history of a material's processing, use and misuse. A knowledge of the texture is a prerequisite for all quantitative techniques of materials characterization, and is based upon the interpretation of diffraction-peak intensities. It is also necessary to model the relationships between microstructural features and physical or mechanical properties. Therefore, the texture is of great value for quality control in a wide range of industrial applications, and in basic materials research.

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Texture Development and Plastic Anisotropy in Deformed Polycrystals

Download or read book Texture Development and Plastic Anisotropy in Deformed Polycrystals written by Toru Takeshita and published by . This book was released on 1987 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystallographic Texture Evolution and Elastic Anisotropy

Download or read book Crystallographic Texture Evolution and Elastic Anisotropy written by Thomas Böhlke and published by . This book was released on 2001 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Texture Analysis in Materials Science

Download or read book Texture Analysis in Materials Science written by H.-J. Bunge and published by Elsevier. This book was released on 2013-09-03 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Texture Analysis in Materials Science Mathematical Methods focuses on the methodologies, processes, techniques, and mathematical aids in the orientation distribution of crystallites. The manuscript first offers information on the orientation of individual crystallites and orientation distributions. Topics include properties and representations of rotations, orientation distance, and ambiguity of rotation as a consequence of crystal and specimen symmetry. The book also takes a look at expansion of orientation distribution functions in series of generalized spherical harmonics, fiber textures, and methods not based on the series expansion. The publication reviews special distribution functions, texture transformation, and system of programs for the texture analysis of sheets of cubic materials. The text also ponders on the estimation of errors, texture analysis, and physical properties of polycrystalline materials. Topics include comparison of experimental and recalculated pole figures; indetermination error for incomplete pole figures; and determination of the texture coefficients from anisotropie polycrystal properties. The manuscript is a dependable reference for readers interested in the use of mathematical aids in the orientation distribution of crystallites.

Book Crystallographic Texture of Materials

Download or read book Crystallographic Texture of Materials written by Satyam Suwas and published by Springer. This book was released on 2016-09-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive and invaluable overview of the basics of crystallographic textures and their industrial applications, this book covers a broad range of both structural and functional materials. It introduces the existing methods of representation in an accessible manner and presents a thorough overview of existing knowledge on texture of metallic materials. Texture analysis has widespread use in many industries, and provides crucial input towards the development of new materials and products. There has been rapid growth in the science and art of texture analysis in the last few decades. Other topics addressed within this book include recent research on texture in thin films and non-metals, and the dependence of material properties on texture, and texture control in some engineering materials. This book constitutes an invaluable reference text for researchers and professionals working on texture analysis in metallurgy, materials science and engineering, physics and geology. By using content selectively, it is also highly accessible to undergraduate students.

Book Orientations and Rotations

    Book Details:
  • Author : Adam Morawiec
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 3662091569
  • Pages : 203 pages

Download or read book Orientations and Rotations written by Adam Morawiec and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentially, Orientations and Rotations treats the mathematical and computational foundations of texture analysis. It contains an extensive and thorough introduction to parameterizations and geometry of the rotation space. Since the notions of orientations and rotations are of primary importance for science and engineering, the book can be useful for a very broad audience using rotations in other fields.

Book Introduction to Texture Analysis

Download or read book Introduction to Texture Analysis written by Olaf Engler and published by CRC Press. This book was released on 2024-02-14 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting emerging methods and the evolution of the field, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping keeps mathematics to a minimum in covering both traditional macrotexture analysis and more advanced electron-microscopy-based microtexture analysis. The authors integrate the two techniques and address the subsequent need for a more detailed explanation of philosophy, practice, and analysis associated with texture analysis. The book illustrates approaches to orientation measurement and interpretation and elucidates the fundamental principles on which measurements are based. Thoroughly updated, this Third Edition of a best-seller is a rare introductory-level guide to texture analysis. Discusses terminology associated with orientations, texture, and their representation, as well as the diffraction of radiation, a phenomenon that is the basis for almost all texture analysis. Covers data acquisition, as well as representation and evaluation related to the well-established methods of macrotexture analysis. Updated to include experimental details of the latest transmission or scanning electron microscope-based techniques for microstructure analysis, including electron backscatter diffraction (EBSD). Describes how microtexture data are evaluated and represented and emphasizes the advances in orientation microscopy and mapping, and advanced issues concerning crystallographic aspects of interfaces and connectivity. Offers new and innovative grain boundary descriptions and examples. This book is an ideal tool to help readers in the materials sciences develop a working understanding of the practice and applications of texture.

Book Plasticity and Textures

    Book Details:
  • Author : W. Gambin
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 9401597634
  • Pages : 254 pages

Download or read book Plasticity and Textures written by W. Gambin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical, phenomenological theory of plastically anisotropic materials has passed a long way: from the work of von Mises presented in 1928, and the HilI formulation given in 1948, to the latest papers on large elastic-plastic deformations of anisotropic metal sheets. A characteristic feature of this approach is a linear flow rule and a quadratic yield criterion. Mathematical simplicity of the theory is a reason of its numerous applications to the analysis of engineering structures during the onset of plastic deformations. However, such an approach is not sufficient for description of the metal forming processes, when a metal element undergoes very large plastic strains. If we take an initially isotropic piece of metal, it becomes plastically anisotropic during the forming process, and the induced anisotropy progressively increases. This fact strongly determines directions of plastic flow, and it leads to an unexpected strain localization in sheet elements. To explain the above, it is necessary to take into account a polycrystalline structure of the metal, plastic slips on slip systems of grains, crystallographic lattice rotations, and at last, a formation of textures and their evolution during the whole deformation process. In short, it is necessary to introduce the plasticity of crystals and polycrystals. The polycrystal analysis shows that, when the advanced plastic strains take place, some privileged crystallographic directions, called a crystallographic texture, occur in the material. The texture formation and evolution are a primary reason for the induced plastic anisotropy in pure metals.

Book Introduction to Texture Analysis

Download or read book Introduction to Texture Analysis written by Olaf Engler and published by CRC Press. This book was released on 2009-11-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra

Book Handbook of Aluminum

Download or read book Handbook of Aluminum written by George E. Totten and published by CRC Press. This book was released on 2003-04-25 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference provides thorough and in-depth coverage of the latest production and processing technologies encountered in the aluminum alloy industry, discussing current analytical methods for aluminum alloy characterization as well as extractive metallurgy, smelting, master alloy formation, and recycling. The Handbook of Aluminum: Volume 2 examin

Book Anisotropy and Localization of Plastic Deformation

Download or read book Anisotropy and Localization of Plastic Deformation written by J.P. Boehler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Present developments in materials science, mechanics and engineering, as well as the demands of modern technology, result in a new and growing interest in plasticity and in bordering domains of the mechanical behavior of materials. This growing interest is attested to by the success of both The International Journal of Plasticity, which after its inception rapidly became the leading journal for plasticity research, and the series ofInternational Symposia on Plasticity and Its Current Applications, which is now the premier international forum for plasticity research dissemination. The First International Symposium on Plasticity and Its Current Applications was conceived and organized by Professor Akhtar S. Khan, and was held at the University of Oklahoma (Norman, Oklahoma, USA) from July 30 to August 3, 1984. It was attended by over one hundred scientists from fifteen countries. "Plasticity '89: the Second International Symposium on Plasticity and Its Current Applications" was held at Mie University (Tsu, Japan) from July 31 to August 4, 1989; this symposium was co-chaired by Professors Khan and Tokuda. The main emphasis of this meeting was on dynamic plasticity and micromechanics, although it included other aspects of plasticity as well. It was attended by over two hundred researchers from twenty-three nations.

Book Numerical Modelling of Material Deformation Processes

Download or read book Numerical Modelling of Material Deformation Processes written by Peter Hartley and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.