Download or read book Tensors for Data Processing written by Yipeng Liu and published by Academic Press. This book was released on 2021-10-21 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application
Download or read book Tensor Computation for Data Analysis written by Yipeng Liu and published by Springer Nature. This book was released on 2021-08-31 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.
Download or read book Matrix and Tensor Decompositions in Signal Processing Volume 2 written by Gérard Favier and published by John Wiley & Sons. This book was released on 2021-08-17 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.
Download or read book Visualization and Processing of Tensor Fields written by Joachim Weickert and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
Download or read book Tensors in Image Processing and Computer Vision written by Santiago Aja-Fernández and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.
Download or read book Vector and Tensor Analysis with Applications written by A. I. Borisenko and published by Courier Corporation. This book was released on 2012-08-28 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Download or read book Tensor Regression written by Jiani Liu and published by . This book was released on 2021-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.
Download or read book Tensors Geometry and Applications written by J. M. Landsberg and published by American Mathematical Soc.. This book was released on 2011-12-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Download or read book Tensor Methods in Statistics written by Peter McCullagh and published by Courier Dover Publications. This book was released on 2018-07-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.
Download or read book Nonnegative Matrix and Tensor Factorizations written by Andrzej Cichocki and published by John Wiley & Sons. This book was released on 2009-07-10 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
Download or read book Tensor Analysis on Manifolds written by Richard L. Bishop and published by Courier Corporation. This book was released on 2012-04-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Download or read book Introduction to Tensor Analysis and the Calculus of Moving Surfaces written by Pavel Grinfeld and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Download or read book Tensor Spaces and Numerical Tensor Calculus written by Wolfgang Hackbusch and published by Springer Nature. This book was released on 2019-12-16 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
Download or read book What Are Tensors Exactly written by Hongyu Guo and published by World Scientific. This book was released on 2021-06-16 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.
Download or read book An Introduction to Tensor Analysis written by Bipin Singh Koranga and published by CRC Press. This book was released on 2022-09-01 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.
Download or read book Tensor and Vector Analysis written by C. E. Springer and published by Courier Corporation. This book was released on 2013-09-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.
Download or read book Anisotropy Across Fields and Scales written by Evren Özarslan and published by Springer Nature. This book was released on 2021 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.