EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Tensor Network Contractions

Download or read book Tensor Network Contractions written by Shi-Ju Ran and published by Springer Nature. This book was released on 2020-01-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.

Book Tensor Networks and the Renormalization Group

Download or read book Tensor Networks and the Renormalization Group written by Markus Vili Antero Hauru and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor networks are a class of methods for studying many-body systems. They give a geometrical description of the internal structure of many-body states, operators, and partition functions, that can be used to implement efficient algorithms to simulate them numerically. In this thesis, after providing a very brief overview of the field, we present new tensor network methods for three different use cases. First, we present a new real-space renormalization group algorithm for tensor networks. Compared to existing methods, its advantages are its low computational cost, simplicity of implementation, and applicability to any network. We benchmark it on the 2D classical Ising model and find accuracy comparable with the best existing tensor network methods. Due to its simplicity and generalizability, we consider our algorithm to be an excellent candidate for implementation of real-space renormalization in higher dimensions, and discuss some of the details and the remaining challenges in 3D. Second, we show how certain topological conformal defects of critical lattice theories can be represented as tensor networks, using the 2D classical Ising model as an example. Furthermore, we show how such tensor network descriptions, combined with a renormalization group algorithm, can be used to obtain accurate estimates of the universal properties of these defects. We also show how coarse-graining of defects can be applied to any conformal defect (i.e. not just topological ones), and yields a set of associated scaling dimensions. Finally, we leave behind the focus on renormalization group methods, and present a method for spatially resolving the overlap between two tensor network states, to obtain localized information about the similarities and differences between them. For a given region, the similarity of two states in this region can be quantified by the Uhlmann fidelity of their reduced density matrices, and we show how such fidelities can be efficiently computed in many cases when the two states are represented as tensor networks. We demonstrate the usefulness of evaluating such subsystem fidelities with three example applications: studying local quenches, comparing critical and non-critical states, and quantifying convergence in tensor network simulations.

Book Density Matrix and Tensor Network Renormalization

Download or read book Density Matrix and Tensor Network Renormalization written by Tao Xiang and published by Cambridge University Press. This book was released on 2023-08-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.

Book Density Matrix and Tensor Network Renormalization

Download or read book Density Matrix and Tensor Network Renormalization written by Tao Xiang and published by Cambridge University Press. This book was released on 2023-08-31 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renormalization group theory of tensor network states provides a powerful tool for studying quantum many-body problems and a new paradigm for understanding entangled structures of complex systems. In recent decades the theory has rapidly evolved into a universal framework and language employed by researchers in fields ranging from condensed matter theory to machine learning. This book presents a pedagogical and comprehensive introduction to this field for the first time. After an introductory survey on the major advances in tensor network algorithms and their applications, it introduces step-by-step the tensor network representations of quantum states and the tensor-network renormalization group methods developed over the past three decades. Basic statistical and condensed matter physics models are used to demonstrate how the tensor network renormalization works. An accessible primer for scientists and engineers, this book would also be ideal as a reference text for a graduate course in this area.

Book Introduction to Tensor Network Methods

Download or read book Introduction to Tensor Network Methods written by Simone Montangero and published by Springer. This book was released on 2018-11-28 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.

Book Tensor Network Contractions

Download or read book Tensor Network Contractions written by Maciej Lewenstein and published by . This book was released on 2020-10-08 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Book Quantum Machine Learning

Download or read book Quantum Machine Learning written by Peter Wittek and published by Academic Press. This book was released on 2014-09-10 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. Bridges the gap between abstract developments in quantum computing with the applied research on machine learning Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Book Quantum Chemistry and Dynamics of Excited States

Download or read book Quantum Chemistry and Dynamics of Excited States written by Leticia González and published by John Wiley & Sons. This book was released on 2021-02-01 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.

Book Griffiths Singularities in the Random Quantum Ising Antiferromagnet

Download or read book Griffiths Singularities in the Random Quantum Ising Antiferromagnet written by Yu-Ping Lin and published by . This book was released on 2019 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Exact Renormalization Group  The   Proceedings Of The Workshop

Download or read book Exact Renormalization Group The Proceedings Of The Workshop written by Alexander Krasnitz and published by World Scientific. This book was released on 1999-08-13 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the exact renormalization group started from pioneering work by Wegner and Houghton in the early seventies and, a decade later, by Polchinski, who formulated the Wilson renormalization group for field theory. In the past decade considerable progress has been made in this field, which includes the development of alternative formulations of the approach and of powerful techniques for solving the exact renormalization group equations, as well as widening of the scope of the exact renormalization group method to include fermions and gauge fields. In particular, two very recent results, namely the manifestly gauge-invariant formulation of the exact renormalization group equation and the proof of the c-theorem in four dimensions, are presented in this volume.

Book Tensor Network and Neural Network Methods in Physical Systems

Download or read book Tensor Network and Neural Network Methods in Physical Systems written by Peiyuan Teng and published by . This book was released on 2018 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, new ideas and methods from tensor network theory and neural network theory are discussed. Firstly, common computational methods, such as the exact diagonalization method, the Density Matrix Renormalization Group approach, and the tensor network theory are reviewed. Following this direction, a way of generalizing the tensor renormalization group (TRG) to all spatial dimensions is proposed. Mathematically, the connection between patterns of tensor renormalization group and the concept of truncation sequence in polytope geometry is discovered. A theoretical contraction framework is proposed. Furthermore, the canonical polyadic decomposition is introduced to tensor network theory. A numerical verification of this method on the 3-D Ising model is carried out. Secondly, this dissertation includes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, highly entangled qubit states are searched for to show the applicability of this method. Finally, machine learning approaches are reviewed. Machine learning methods are applied to quantum mechanics. The radial basis function network in a discrete basis is used as the variational wavefunction for the ground state of a quantum system. Variational Monte Carlo(VMC) calculations are carried out for some simple Hamiltonians. The results are in good agreements with theoretical values. The smallest eigenvalue of a Hermitian matrix can also be acquired using VMC calculations. These results demonstrate that machine learning techniques are capable of solving quantum mechanical problems.

Book Tensor Network States

    Book Details:
  • Author : Justin Reyes
  • Publisher :
  • Release : 2020
  • ISBN :
  • Pages : 127 pages

Download or read book Tensor Network States written by Justin Reyes and published by . This book was released on 2020 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor network states are ubiquitous in the investigation of quantum many-body (QMB) physics. Their advantage over other state representations is evident from their reduction in the computational complexity required to obtain various quantities of interest, namely observables. Additionally, they provide a natural platform for investigating entanglement properties within a system. In this dissertation, we develop various novel algorithms and optimizations to tensor networks for the investigation of QMB systems, including classical and quantum circuits. Specifically, we study optimizations for the two-dimensional Ising model in a transverse field, we create an algorithm for the k-SAT problem, and we study the entanglement properties of random unitary circuits. In addition to these applications, we reinterpret renormalization group principles from QMB physics in the context of machine learning to develop a novel algorithm for the tasks of classification and regression, and then utilize machine learning architectures for the time evolution of operators in QMB systems.

Book Sustainable Interdependent Networks II

Download or read book Sustainable Interdependent Networks II written by M. Hadi Amini and published by Springer. This book was released on 2018-12-11 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book paves the way for researchers working on the sustainable interdependent networks spread over the fields of computer science, electrical engineering, and smart infrastructures. It provides the readers with a comprehensive insight to understand an in-depth big picture of smart cities as a thorough example of interdependent large-scale networks in both theory and application aspects. The contributors specify the importance and position of the interdependent networks in the context of developing the sustainable smart cities and provide a comprehensive investigation of recently developed optimization methods for large-scale networks. There has been an emerging concern regarding the optimal operation of power and transportation networks. In the second volume of Sustainable Interdependent Networks book, we focus on the interdependencies of these two networks, optimization methods to deal with the computational complexity of them, and their role in future smart cities. We further investigate other networks, such as communication networks, that indirectly affect the operation of power and transportation networks. Our reliance on these networks as global platforms for sustainable development has led to the need for developing novel means to deal with arising issues. The considerable scale of such networks, due to the large number of buses in smart power grids and the increasing number of electric vehicles in transportation networks, brings a large variety of computational complexity and optimization challenges. Although the independent optimization of these networks lead to locally optimum operation points, there is an exigent need to move towards obtaining the globally-optimum operation point of such networks while satisfying the constraints of each network properly. The book is suitable for senior undergraduate students, graduate students interested in research in multidisciplinary areas related to future sustainable networks, and the researchers working in the related areas. It also covers the application of interdependent networks which makes it a perfect source of study for audience out of academia to obtain a general insight of interdependent networks.

Book Density Matrix Renormalization Group  DMRG  based Approaches in Computational Chemistry

Download or read book Density Matrix Renormalization Group DMRG based Approaches in Computational Chemistry written by Haibo Ma and published by Elsevier. This book was released on 2022-08-21 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Density Matrix Renormalization Group (DMRG)-based Approaches in Computational Chemistry outlines important theories and algorithms of DMRG-based approaches and explores their use in computational chemistry. Beginning with an introduction to DMRG and DMRG-based approaches, the book goes on to discuss the key theories and applications of DMRG, from DMRG for semi-empirical and ab-initio quantum chemistry, to DMRG in embedded environments, frequency spaces and quantum dynamics. Drawing on the experience of its expert authors, sections detail recent ideas and key developments, providing an up-to-date view of current developments in the field for students and researchers in quantum chemistry. Provides an expertly-curated, consolidated overview of research in the field Includes exercises that support learning and link theory to practice Outlines key theories and algorithms for computational chemistry applications

Book Quantum Chemistry and Dynamics of Excited States

Download or read book Quantum Chemistry and Dynamics of Excited States written by Leticia González and published by John Wiley & Sons. This book was released on 2020-11-10 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.

Book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems

Download or read book Tensor Network States and Effective Particles for Low Dimensional Quantum Spin Systems written by Laurens Vanderstraeten and published by Springer. This book was released on 2017-08-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops new techniques for simulating the low-energy behaviour of quantum spin systems in one and two dimensions. Combining these developments, it subsequently uses the formalism of tensor network states to derive an effective particle description for one- and two-dimensional spin systems that exhibit strong quantum correlations. These techniques arise from the combination of two themes in many-particle physics: (i) the concept of quasiparticles as the effective low-energy degrees of freedom in a condensed-matter system, and (ii) entanglement as the characteristic feature for describing quantum phases of matter. Whereas the former gave rise to the use of effective field theories for understanding many-particle systems, the latter led to the development of tensor network states as a description of the entanglement distribution in quantum low-energy states.

Book Modelling Non Markovian Quantum Systems Using Tensor Networks

Download or read book Modelling Non Markovian Quantum Systems Using Tensor Networks written by Aidan Strathearn and published by Springer Nature. This book was released on 2020-08-31 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.