Download or read book Visualization and Processing of Tensor Fields written by Joachim Weickert and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.
Download or read book Integral Geometry of Tensor Fields written by V. A. Sharafutdinov and published by Walter de Gruyter. This book was released on 2012-01-02 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Download or read book New Developments in the Visualization and Processing of Tensor Fields written by David H. Laidlaw and published by Springer Science & Business Media. This book was released on 2012-09-14 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.
Download or read book Visualization and Processing of Tensor Fields written by David H. Laidlaw and published by Springer Science & Business Media. This book was released on 2009-03-30 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. With numerous color figures, it details both the underlying mathematics and the applications of tensor fields.
Download or read book Body Tensor Fields in Continuum Mechanics written by Arthur S. Lodge and published by Academic Press. This book was released on 2014-05-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Body Tensor Fields in Continuum Mechanics: With Applications to Polymer Rheology aims to define body tensor fields and to show how they can be used to advantage in continuum mechanics, which has hitherto been treated with space tensor fields. General tensor analysis is developed from first principles, using a novel approach that also lays the foundations for other applications, e.g., to differential geometry and relativity theory. The applications given lie in the field of polymer rheology, treated on the macroscopic level, in which relations between stress and finite-strain histories are of central interest. The book begins with a review of mathematical prerequisites, namely primitive concepts, linear spaces, matrices and determinants, and functionals. This is followed by separate chapters on body tensor and general space tensor fields; the kinematics of shear flow and shear-free flow; Cartesian vector and tensor fields; and relative tensors, field transfer, and the body stress tensor field. Subsequent chapters deal with constitutive equations for viscoelastic materials; reduced constitutive equations for shear flow and shear-free flow; covariant differentiation and the stress equations of motion; and stress measurements in unidirectional shear flow.
Download or read book Vector and Tensor Analysis with Applications written by Aleksandr Ivanovich Borisenko and published by Courier Corporation. This book was released on 1968-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Download or read book New Insights on Multidimensional Image and Tensor Field Segmentation written by Rodrigo De Louis García and published by Presses univ. de Louvain. This book was released on 2007 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extracting knowledge from images through feature extraction is a topic of paramount importance for the Image Processing and Computer Vision communities. Within this general objective, this thesis focuses on the combination of the intensity and texture information, encoded by means of the local structure tensor (LST), for the segmentation of images. The LST is a well-stablished tool for the representation of oriented textures, and its incorporation to the segmentation process has reported to improve the segmentation performance. However, its combined use with the intensity is a complex issue that must be tackled carefully. This dissertation explores various alternatives to achieve this combination, and besides studies the problem of the balance of both sources of information. Within a level set framework, the segmentation is first performed in the tensor domain based on the definition of novel LST tensor variants that incorporate intensity information. A different approach is also considered based on a common energy minimization framework that allows the usage of both the insensity and the LST respecting their most adequate representation forms and suitable metrics. Besides, an adaptive procedure for the determination of the weighting parameters is proposed that takes into account the respective discriminant power of both features. The segmentation of tensor fields is also addressed in this dissertation. In this direction, an extension to the state-of-the-art approaches for the segmentation of tensor data has been derived which is based on the modeling of tensor data using mixtures of Gaussians. The application of this scheme can be devoted to the combined use of the intensity and texture as introduced before, as well as for the stand-alone segmentation of tensor fields. The methods proposed in this dissertation are applied to three medical image applications. The first two are performed using both the intensity and the LST in a combined approach as proposed in this thesis. Specifically, the segmentation of hand bones from radiographs is first addressed, related to the problem of the automated determination of the skeletal age in children. Next, the endocardium of the left ventricle is extractred from 3D+T cardiac MRI images. The third application is devoted to the segmentation of the corpus callosum from diffusion tensor MRI, and is thus an application of the Gaussian mixtures model for tensor field segmentation.
Download or read book Tensor Calculus With Applications written by Vladislav V Goldberg and published by World Scientific Publishing Company. This book was released on 2003-09-29 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the foundations of tensor calculus and the elements of tensor analysis. In addition, the authors consider numerous applications of tensors to geometry, mechanics and physics.While developing tensor calculus, the authors emphasize its relationship with linear algebra. Necessary notions and theorems of linear algebra are introduced and proved in connection with the construction of the apparatus of tensor calculus; prior knowledge is not assumed. For simplicity and to enable the reader to visualize concepts more clearly, all exposition is conducted in three-dimensional space. The principal feature of the book is that the authors use mainly orthogonal tensors, since such tensors are important in applications to physics and engineering.With regard to applications, the authors construct the general theory of second-degree surfaces, study the inertia tensor as well as the stress and strain tensors, and consider some problems of crystallophysics. The last chapter introduces the elements of tensor analysis.All notions introduced in the book, and also the obtained results, are illustrated with numerous examples discussed in the text. Each section of the book presents problems (a total over 300 problems are given). Examples and problems are intended to illustrate, reinforce and deepen the presented material. There are answers to most of the problems, as well as hints and solutions to selected problems at the end of the book.
Download or read book Euclidean Tensor Calculus with Applications written by Iulian Beju and published by CRC Press. This book was released on 1983 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Anisotropy Across Fields and Scales written by Evren Özarslan and published by Springer Nature. This book was released on 2021 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
Download or read book Tensor Analysis written by Fridtjov Irgens and published by Springer. This book was released on 2018-12-15 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents tensors and tensor analysis as primary mathematical tools for engineering and engineering science students and researchers. The discussion is based on the concepts of vectors and vector analysis in three-dimensional Euclidean space, and although it takes the subject matter to an advanced level, the book starts with elementary geometrical vector algebra so that it is suitable as a first introduction to tensors and tensor analysis. Each chapter includes a number of problems for readers to solve, and solutions are provided in an Appendix at the end of the text. Chapter 1 introduces the necessary mathematical foundations for the chapters that follow, while Chapter 2 presents the equations of motions for bodies of continuous material. Chapter 3 offers a general definition of tensors and tensor fields in three-dimensional Euclidean space. Chapter 4 discusses a new family of tensors related to the deformation of continuous material. Chapter 5 then addresses constitutive equations for elastic materials and viscous fluids, which are presented as tensor equations relating the tensor concept of stress to the tensors describing deformation, rate of deformation and rotation. Chapter 6 investigates general coordinate systems in three-dimensional Euclidean space and Chapter 7 shows how the tensor equations discussed in chapters 4 and 5 are presented in general coordinates. Chapter 8 describes surface geometry in three-dimensional Euclidean space, Chapter 9 includes the most common integral theorems in two- and three-dimensional Euclidean space applied in continuum mechanics and mathematical physics.
Download or read book Tensors in Image Processing and Computer Vision written by Santiago Aja-Fernández and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.
Download or read book Fundamentals of Structural Mechanics written by Keith D. Hjelmstad and published by Springer Science & Business Media. This book was released on 2004-11-12 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: A solid introduction to basic continuum mechanics, emphasizing variational formulations and numeric computation. The book offers a complete discussion of numerical method techniques used in the study of structural mechanics.
Download or read book Symmetry and Condensed Matter Physics written by M. El-Batanouny and published by Cambridge University Press. This book was released on 2008-03-13 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike existing texts, this book blends for the first time three topics in physics - symmetry, condensed matter physics and computational methods - into one pedagogical textbook. It includes new concepts in mathematical crystallography; experimental methods capitalizing on symmetry aspects; non-conventional applications such as Fourier crystallography, color groups, quasicrystals and incommensurate systems; as well as concepts and techniques behind the Landau theory of phase transitions. Adopting a computational approach to the application of group theoretical techniques to solving symmetry related problems, it dramatically alleviates the need for intensive calculations usually found in the presentation of symmetry. Writing computer programs helps the student achieve a firm understanding of the underlying concepts, and sample programs, based on Mathematica, are presented throughout the book. Containing over 150 exercises, this textbook is ideal for graduate students in condensed matter physics, materials science, and chemistry. Solutions and computer programs are available online at www.cambridge.org/9780521828451.
Download or read book Manifolds and Differential Geometry written by Jeffrey Marc Lee and published by American Mathematical Soc.. This book was released on 2009 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Download or read book Classical Field Theory and the Stress Energy Tensor written by Mark S. Swanson and published by Morgan & Claypool Publishers. This book was released on 2015-10-12 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory.
Download or read book Encyclopedic Dictionary of Mathematics written by Nihon Sūgakkai and published by MIT Press. This book was released on 1993 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: V.1. A.N. v.2. O.Z. Apendices and indexes.