EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Techno economic Analysis of Pressurized Oxy fuel Combustion Power Cycle for CO2 Capture

Download or read book Techno economic Analysis of Pressurized Oxy fuel Combustion Power Cycle for CO2 Capture written by Jongsup Hong and published by . This book was released on 2009 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) We calculate the energy requirements of each unit and determine the pressure dependence of the water-condensing thermal energy recovery and its relation to the gross power output. Furthermore, a sensitivity analysis is conducted on important operating parameters including combustor temperature, Heat Recovery Steam Generator outlet temperature, oxygen purity and oxygen concentration in the flue gases. A cost analysis of the proposed system is also conducted so as to provide preliminary cost estimates.

Book Simulation and Techno economic Analysis of Pressurized Oxy fuel Combustion of Petroleum Coke

Download or read book Simulation and Techno economic Analysis of Pressurized Oxy fuel Combustion of Petroleum Coke written by Hachem Hamadeh and published by . This book was released on 2018 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research presented in this thesis was part of the International Partnership for Carbon Neutral Combustion, which was sponsored by King Abdulla University of Science and Technology. The thesis focuses on oxy-fuel combustion under pressurized conditions and assesses the technical and economic viability of combusting petroleum coke (petcoke) for electricity generation, while capturing CO2. The technical evaluation was conducted through simulating, in Aspen PlusTM, an oxy-combustion power plant that uses petcoke as fuel. The basis for all simulations was a constant heat input of 1877 MWth, while a 3% (on dry basis) excess oxygen was maintain in the flue gas along with an adiabatic flame-temperature of 1866ʻC. Comparisons with the oxy-combustion of Illinois No. 6 coal showed that oxy-coal combustion was 0.6% points (on HHV basis) more efficient than oxy-petcoke combustion (29.0% versus 29.6%). However, operating oxy-petcoke combustion at elevated pressures improved the net efficiency to a maximum of just over 29.8% (on HHV basis) at 10 bar. A sensitivity analysis on the impact of operating pressure was conducted on the fuel intake, O2 required, recycle ratio and removal ratio of SOx and NOx via flash distillation; along with how the operating pressure within the carbon capture unit affects the recovery and purity of the CO2 being separated. The sensitivity analysis showed that pressure had minimal impact on the fuel intake and O2 required but affected recycle ratio by up to 3% points, while increasing pressure improved the removal ratio of SOx and NOx. As for the operating pressure of the carbon capture unit, the recovery and purity of the CO2 produced was preferred at 35 bar. In addition, a modification to the steam cycle is presented that utilizes the latent heat of the flue gas to heat the feed water, which improves the net efficiency of the power plant at all pressures by 1.9% points. As for the economic evaluation, the oxy-petcoke combustion power plant was assumed to be built in the US and in KSA. The levelized cost of electricity (LCOE) for oxy-coal combustion was 11.6 [cent]/kWh (in 2017 USD) compared to 10.4 [cent]/kWh and 6.5 [cent]/kWh for atmospheric oxy-petcoke combustion in the US and in KSA, respectively. The LCOE further drops to a minimum of 9.2 [cent]/kWh in the US, or 5.7[cent]/kWh in KSA, when oxy-petcoke combustion takes place at 10 or 15 bar. However, based on a profitability analysis, operating at 10 bar has the highest net profit, highest net present value and lowest discounted payback period, compared to the plants operating at 1, 5 and 15 bar, whether in the US or in KSA. A sensitivity analysis was also conducted that showed that the cost of manufacturing (COM), LCOE and costs of CO2 avoided and CO2 capture are most sensitive to total capital cost, and to a lesser extent the cost of the fuel, which in this case is petcoke. Overall, the technical and economic evaluation help conclude that using petcoke as a fuel to generate electricity is viable in oil-refining countries like the US or KSA, in which pressurized oxy-petcoke combustion is better than atmospheric as the highest net efficiency and lowest LCOE are achieved at an operating pressure of 10 bar.

Book Techno economic Analysis of Sour Gas Oxy fuel Combustion Power Cycles for Carbon Capture and Sequestration

Download or read book Techno economic Analysis of Sour Gas Oxy fuel Combustion Power Cycles for Carbon Capture and Sequestration written by Nadim Walid Chakroun and published by . This book was released on 2014 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power plants. One of these unconventional fuels is sour gas. Sour gas consists of mainly methane, containing large concentrations of hydrogen sulfide and carbon dioxide. Over 30% of the world's natural gas reserves are considered sour. However this unusual fuel poses many challenges due to the toxic and corrosive nature of the combustion products. One of the most promising technologies for carbon capture and sequestration is oxy-fuel combustion. This involves separating the nitrogen from air prior to the combustion itself. Then, after combustion, we separate the water and other substances and can use the resulting carbon dioxide stream for enhanced oil recovery representing an added economic benefit of this system. Firing temperatures for pure oxygen combustion can reach values up to 2500° C, which is well above what the combustor can handle. Therefore a diluent has to be added to reduce the temperature back to appropriate levels, but the key question is how this impacts the efficiency and performance of the entire cycle. Hence, if feasible, the use of sour gas in an oxy-fuel power plant could potentially allow us to harness the economic and environmental potential of this unconventional fuel. Depending on the cycle configuration, water or carbon dioxide can be used as diluents to control the flame temperature in the combustion process. All of these cycle types were modeled and the cycles' performances and emissions were studied. When the working fluid condenses in the cycle, sulfuric acid is formed due the presence of SO, compounds, which causes corrosion and can damage power plant components. Therefore, either expensive acid resistant materials should be used, or a redesign of the cycle is required to overcome this challenge. Different options were explored for each of the cycle types mentioned to help in the visualization and performance prediction of possible sour gas oxy-fuel power cycle configurations. A cost analysis of the proposed systems was also conducted in order to provide preliminary levelized cost of electricity estimates.

Book Oxy Fuel Combustion for Power Generation and Carbon Dioxide  CO2  Capture

Download or read book Oxy Fuel Combustion for Power Generation and Carbon Dioxide CO2 Capture written by L Zheng and published by Elsevier. This book was released on 2011-02-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxy-fuel combustion is currently considered to be one of the major technologies for carbon dioxide (CO2) capture in power plants. The advantages of using oxygen (O2) instead of air for combustion include a CO2-enriched flue gas that is ready for sequestration following purification and low NOx emissions. This simple and elegant technology has attracted considerable attention since the late 1990s, rapidly developing from pilot-scale testing to industrial demonstration. Challenges remain, as O2 supply and CO2 capture create significant energy penalties that must be reduced through overall system optimisation and the development of new processes.Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers. Following a foreword by Professor János M. Beér, the book opens with an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment. Part one introduces oxy-fuel combustion further, with a chapter comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture, followed by chapters on plant operation, industrial scale demonstrations, and circulating fluidized bed combustion. Part two critically reviews oxy-fuel combustion fundamentals, such as ignition and flame stability, burner design, emissions and heat transfer characteristics, concluding with chapters on O2 production and CO2 compression and purification technologies. Finally, part three explores advanced concepts and developments, such as near-zero flue gas recycle and high-pressure systems, as well as chemical looping combustion and utilisation of gaseous fuel.With its distinguished editor and internationally renowned contributors, Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture provides a rich resource for power plant designers, operators, and engineers, as well as academics and researchers in the field. - Comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers - Provides an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment - Introduces oxy-fuel combustion comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture

Book Carbon Capture Technologies for Gas Turbine Based Power Plants

Download or read book Carbon Capture Technologies for Gas Turbine Based Power Plants written by Hamidreza Gohari Darabkhani and published by Elsevier. This book was released on 2022-09-24 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon Capture Technologies for Gas-Turbine-Based Power Plants explores current progress in one of the most capable technologies for carbon capture in gas-turbine-based power plants. It identifies the primary benefits and shortcomings of oxy-fuel combustion CO2 capture technology compared to other capture technologies such as pre-combustion and post-combustion capture. This book examines over 20 different oxy-combustion turbine (oxyturbine) power cycles by providing their main operational parameters, thermodynamics and process modelling, energy and exergy analysis and performance evaluation. The conventional natural gas combined cycle (NGCC) power plant with post-combustion capture used as the base-case scenario. The design procedure and operational characteristics of a radial NOx-less oxy-fuel gas turbine combustor are presented with CFD simulation and performance analysis of the heat exchanger network and turbomachinery. Overview of oxygen production and air separation units (ASU) and CO2 compression and purification units (CPU) are also presented and discussed. The most advanced stages of development for the leading oxyturbine power cycles are assessed using techno-economic analysis, sensitivity, risk assessments and levelized cost of energy (LCOE) and analysing technology readiness level (TRL) and development stages. The book concludes with a road map for the development of future gas turbine-based power plants with full carbon capture capabilities using the experiences of the recently demonstrated cycles. - Analyzes more than 20 models of oxyturbine power cycles, identifying the main parameters regarding their operation, process and performance simulations and energy and exergy analysis - Provides techno-economic analysis, TRL, sensitivity and risk analysis, LCOE and stages of development for oxy-combustion turbine power plants - Presents the design procedure and CFD simulation of a radial NOx-less oxy-fuel gas turbine combustor exploring its influence on heat exchanger network and turbomachinery - Supports practitioners, policymakers and energy industry managers seeking pathways to convert coal-fired power plants to gas-fired plants with zero CO2 emission

Book Oxyfuel Combustion for Clean Energy Applications

Download or read book Oxyfuel Combustion for Clean Energy Applications written by Medhat A. Nemitallah and published by Springer. This book was released on 2019-02-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to be the reference book in the area of oxyfuel combustion, covering the fundamentals, design considerations and current challenges in the field. Its first part provides an overview of the greenhouse gas emission problem and the current carbon capture and sequestration technologies. The second part introduces oxy-fuel combustion technologies with emphasis on system efficiency, combustion and emission characteristics, applications and related challenges. The third part focuses on the recent developments in ion transport membranes and their performance in both oxygen separation units and oxygen transport reactors (OTRs). The fourth part presents novel approaches for clean combustion in gas turbines and boilers. Computational modelling and optimization of combustion in gas turbine combustors and boiler furnaces are presented in the fifth part with some numerical results and detailed analyses.

Book Pilot Scale Demonstration of a Novel  Low Cost Oxygen Supply Process and Its Integration with Oxy Fuel Coal Fired Boilers

Download or read book Pilot Scale Demonstration of a Novel Low Cost Oxygen Supply Process and Its Integration with Oxy Fuel Coal Fired Boilers written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO2 rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

Book Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy combustion in Conjunction with Cryogenic Compression

Download or read book Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy combustion in Conjunction with Cryogenic Compression written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO2 removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO2 capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO2 (sCO2) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO2 environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would ad ...

Book Process Intensification

Download or read book Process Intensification written by David Reay and published by Butterworth-Heinemann. This book was released on 2013-06-05 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems. Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint. This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems. - No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide - Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis - World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology

Book Development of a Novel Gas Pressurized Process Based Technology for CO2 Capture from Post Combustion Flue Gases Preliminary Year 1 Techno Economic Study Results and Methodology for Gas Pressurized Stripping Process

Download or read book Development of a Novel Gas Pressurized Process Based Technology for CO2 Capture from Post Combustion Flue Gases Preliminary Year 1 Techno Economic Study Results and Methodology for Gas Pressurized Stripping Process written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the DOE's Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 - Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on "Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007" was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS' GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe supercritical PC plant with 90% CO2 capture. This plant has the same boiler firing rate and superheated high pressure steam generation as the DOE/NETL report's Case 12 PC plant. However, due to the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant may not be exactly at 550 MWe.

Book Pressurized Fluidized Bed Combustion

Download or read book Pressurized Fluidized Bed Combustion written by M. Alvarez Cuenca and published by Springer. This book was released on 2012-09-25 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pressurized fluidized bed combustion (PFBC) is one of the newest of the coal-based generation technologies available commercially. This authoritative volume contains an excellent balance of the theoretical and practical aspects of PFBC technology, including economics, the fundamental theory of plant design and sorbent characterization, using the results obtained from a wide range of pilot-scale and full-scale demonstration units

Book Development of a Novel Gas Pressurized Stripping  Gps  Based Technology for CO2 Capture from Post Combustion Flue Gases Topical Report

Download or read book Development of a Novel Gas Pressurized Stripping Gps Based Technology for CO2 Capture from Post Combustion Flue Gases Topical Report written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references. In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS & M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.

Book Pressurized fluidized bed combustion

Download or read book Pressurized fluidized bed combustion written by National Research Development Corporation and published by . This book was released on 1976 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Advances in Hydrogen Production  Storage and Distribution

Download or read book Advances in Hydrogen Production Storage and Distribution written by Adolfo Iulianelli and published by Elsevier. This book was released on 2014-07-16 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods

Book Fundamentals and Applications of Supercritical Carbon Dioxide  SCO2  Based Power Cycles

Download or read book Fundamentals and Applications of Supercritical Carbon Dioxide SCO2 Based Power Cycles written by Klaus Brun and published by Woodhead Publishing. This book was released on 2017-01-09 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. - Represents the first book to focus exclusively on SC02 power cycles - Contains detailed coverage of cycle fundamentals, key components, and design challenges - Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Book Process Systems and Materials for CO2 Capture

Download or read book Process Systems and Materials for CO2 Capture written by Athanasios I. Papadopoulos and published by John Wiley & Sons. This book was released on 2017-03-07 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principles Design of materials and processes based on systematic optimization methods Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.