EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Technique of In band Phase Noise Reduction in Fractional N Frequency Synthesizers

Download or read book Technique of In band Phase Noise Reduction in Fractional N Frequency Synthesizers written by 王俊彬 and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Research on Reducing Out of band Phase Noise of Fractional n Frequency Synthesizer

Download or read book Research on Reducing Out of band Phase Noise of Fractional n Frequency Synthesizer written by 林嘉豪 and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CMOS Fractional N Synthesizers

Download or read book CMOS Fractional N Synthesizers written by Bram De Muer and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: CMOS Fractional-N Synthesizers starts with a comprehensive introduction to general frequency synthesis. Different architectures and synthesizer building blocks are discussed with their relative importance on synthesizer specifications. The process of synthesizer specification derivation is illustrated with the DCS-1800 standard as a general test case. The book tackles the design of fractional-N synthesizers in CMOS on circuit level as well as system level. The circuit level focuses on high-speed prescaler design up to 12 GHz in CMOS and on fully integrated, low-phase-noise LC-VCO design. High-Q inductor integration and simulation in CMOS is elaborated and flicker noise minimization techniques are presented, ranging from bias point choice to noise filtering techniques. On a higher level, a systematic design strategy has been developed that trades off all noise contributions and fast dynamics for integrated capacitance (area). Moreover, a theoretical DeltaSigma phase noise analysis is presented, extended with a fast non-linear analysis method to accurately predict the influence of PLL non-linearities on the spectral purity of the DeltaSigma fractional-N frequency synthesizers.

Book Reducing Phase Noise and Spurious Tones in Fractional n Synthesizers

Download or read book Reducing Phase Noise and Spurious Tones in Fractional n Synthesizers written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A frequency synthesizer is a control system which employs a reference signal from a component, such as a crystal oscillator, with excellent phase and frequency stability to synthesize higher frequencies with similarly desirable characteristics. Such a control system is at the heart of many communication schemes. Due to the digital circuitry used in frequency synthesis, it is relatively straightforward to synthesize frequencies at integer multiples of the reference signal frequency. A synthesizer which achieves this is called an integer-N frequency synthesizer. The main challenge in the design of integer-N synthesizers is to reduce phase noise introduced by circuitry while achieving a needed frequency resolution. Noise can be spectrally spread by conversions in the loop which are non-linear, so the strategy to reduce noise is two-fold. Control-loop and circuit design techniques can be used to reduce device noise, but it is also important to make sure that the noise performance is not degraded by spectral spreading within the loop. This thesis addresses primarily the latter approach with the design and implementation of circuits targeting a specific conversion within the loop. Frequency resolution of a synthesizer can be improved by introducing additional circuitry and complexity. This additional complexity makes it possible to multiply the reference frequency by a fractional number and thus achieve higher frequency resolution. A control system which achieves this is called a fractional-N frequency synthesizer. The cost associated with the increased frequency resolution is a form of noise that is deterministic called spurious noise. This spurious noise can also be spread and amplified by non-linear conversions in the control loop. A quantitative understanding of the magnitude of this noise that is not readily available in the literature was developed in this research. A comparison between several implementations of integrated frequency synthesis was also carried out in this research with the intent of providing guidelines to produce a better performing synthesizer. These implementations differ in key components of the loop where linearity is of particular importance.

Book Modelling  Simulation and Architecture Modification of Delta sigma Fractional N Frequency Synthesizers

Download or read book Modelling Simulation and Architecture Modification of Delta sigma Fractional N Frequency Synthesizers written by Zhipeng Ye and published by . This book was released on 2008 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The wireless communication market has been growing rapidly in recent decades. The frequency synthesizer is a key building block in wireless transceivers. It is used as a local oscillator for frequency translation and channel selection. In this thesis, we provide a brief review of PLL frequency synthesizers. A simulation environment for delta-sigma fractional-N frequency synthesizers is built using Verilog-AMS. The digital delta-sigma modulator is modeled as a finite state machine in order to evaluate how the performance of a frequency synthesizer is affected by the cyclic behavior of the DDSM. In addition, jitter and nonlinearities are considered and added to the model. The spur-minimizing effect of an odd initial condition on the first accumulator of a MASH delta-sigma modulator is demonstrated. A noise reduction technique for a fractional-N frequency synthesizer using a multiphase voltage-controlled oscillator is proposed. We have shown that both in-band and out-of-band phase noise can be reduced by 6 dB for every two-fold increase in the number of phases. The multi-phase VCO is also applied in a dual-loop frequency synthesizer. We show that this dual loop frequency synthesizer achieves a similar power spectrum but with superior frequency resolution compared to a conventional dual-loop frequency synthesizer. We have built an experimental platform based on a Xilinx Virtex-5 FPGA board and have used it to confirm the theoretical analysis and simulations. In order to reduce the hardware consumption of a digital delta-sigma modulator, and consequently the power and area consumption, we propose a reduced complexity architecture which can achieve similar spectral performance compared with a conventional DDSM but with up to 20% lower hardware consumption. We have elaborated a rigorous design methodologies based on this idea of error masking. Individual design strategies are derived for MASH DDSMs and SQ DDSMs, both with and without dither.

Book Low Phase Noise  High Bandwidth Frequency Synthesis Techniques

Download or read book Low Phase Noise High Bandwidth Frequency Synthesis Techniques written by Scott Edward Meninger and published by . This book was released on 2005 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: A quantization noise reduction technique is proposed that allows fractional-N frequency synthesizers to achieve high closed loop bandwidth and low output phase noise simultaneously. Quantization induced phase noise is the bottleneck in state-of-the-art synthesizer design, and results in a noise-bandwidth tradeoff that typically limits closed loop synthesizer bandwidths to be

Book Analog Circuit Design

Download or read book Analog Circuit Design written by Arthur H.M. van Roermund and published by Springer Science & Business Media. This book was released on 2003-10-31 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number 12 in the successful series of Analog Circuit Design provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems. The series is an ideal reference for those involved in analogue and mixed-signal design.

Book The Reduction and Cancellation of Phase Noise in Digital Frequency Synthesizers and Quadrature Receivers

Download or read book The Reduction and Cancellation of Phase Noise in Digital Frequency Synthesizers and Quadrature Receivers written by Zuow-Zun Chen and published by . This book was released on 2016 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Circuit and system techniques for reducing phase noise in frequency synthesizers, and cancelling phase noise effect in quadrature receivers are presented. Phase noise performance of digital phase-locked loops (PLLs) is limited by the time resolution of time-to-digital converters (TDC). In contrast to TDCs in the past that concentrate on the arrival time difference between the divider feedback edge and the reference signal edge. Our approach extracts the timing information that is embedded in voltage domain. This approach not only achieves a higher time resolution, lower phase noise, but also consumes less power. A digital background calibration circuit is also presented to reduce the output spurious tones when the digital PLL operates under fractional-N divisions. Ring Oscillators (ROs) have the advantage of small area, wide tuning range, and multiphase output. However, their higher phase noise and higher sensitivity to supply noise may seriously deteriorate the wanted signal in wireless receivers. To circumvent this non-ideality, a low overhead phase noise cancellation technique for ring oscillator-based quadrature receivers is presented. The proposed technique operates in background and extracts ring oscillator phase noise as well as supply-induced phase noise from the digital PLL. The obtained phase noise information is then used to restore the randomly rotated baseband signal in digital domain. In recent years, the unsilenced band at 57~64 GHz frequency range has motivated the building of high-data rate radio systems targeting wireless personal area network (WPAN) applications. To address this demand, a low-noise wide-band integer-N PLL is presented which serves as the carrier generator of a 60 GHz heterogeneous transceiver. The PLL employs sub-sampling phase detection technique to achieve low-noise performance, and provides 48 GHz LO and 12 GHz IF carrier signals for the heterogeneous transceiver.

Book Frequency Synthesizer Design Handbook

Download or read book Frequency Synthesizer Design Handbook written by James A. Crawford and published by Artech House Microwave Library. This book was released on 1994 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is aimed at practitioners wishing to gain a broader systems-based perspective of phase-locked loops; and is also suitable as a graduate text for engineering students. It provides detailed coverage of digital sampling effects in modern phase-locked frequency synthesizers from a systems perspective, and discusses all aspects of phase noise, its mathematical modelling and its impact upon different digital communication systems. Sections on building blocks for frequency synthesis using phase-locked loops, frequency synthesis using sampled-data control systems, and MASCET, are included.

Book Frequency Synthesizers

Download or read book Frequency Synthesizers written by Alexander Chenakin and published by Artech House. This book was released on 2011 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: A frequency synthesizer is an electronic system for generating any of a range of frequencies from a single fixed oscillator. They are found in modern devices like radio receivers, mobile phones, and GPS systems. This comprehensive resource offers RF and microwave engineers a thorough overview of both well-established and recently developed frequency synthesizer design techniques. Professionals find expert guidance on all design aspects, including main architectures, key building blocks, and practical circuit implementation. Engineers learn the development process and gain a solid understanding of how to build a synthesizer from a basic diagram to the final product.Starting with a simple single-loop PLL example, the book progressively examines various alternatives -- fractional-N, DDS, frequency offset, multiloop and more OCo to achieve required performance objectives. This unique volume gathers a collection of block diagrams, clever circuits, design recipes, and other hard-to-find information that is usually treated as OC design secretsOCO. Written in a simple yet rigorous style with numerous illustrations, the book is an all-in-one reference for both beginner and experienced designers.

Book Enabling Techniques for Low Power  High Performance Fractional N Frequency Synthesizers

Download or read book Enabling Techniques for Low Power High Performance Fractional N Frequency Synthesizers written by Ashok Swaminathan and published by . This book was released on 2006 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delta-sigma fractional-N phase-locked loops are used to generate high quality radio-frequency signals for use in wireless applications. To reduce the phase noise inherent to these systems, a digital-to-analog converter is used to cancel the error introduced by the fractional division process, however matching between the digital-to-analog converter and the phase-locked loop circuitry place a limit on the amount of phase noise reduction that can be achieved. Furthermore, circuit non-linearity results in the appearance of spurious tones in the phase-locked loop output. This dissertation outlines a calibration technique, and a digital quantization technique that provide solutions to these two problems. The calibration technique results in improved phase noise performance by adjusting the digital-to-analog converter gain, and thus providing better matching between the phase-locked loop circuitry and digital-to-analog converter. The digital quantization technique results in no spurious tones when specified non-linearity is applied to the quantizer output sequence and error. The calibration technique was implemented in an integrated circuit, which achieves state-of-the-art performance when compared to currently published phase-locked loops and allows for all circuitry to be integrated onto a single chip. Chapter 1 presents the calibration technique, as well as a theoretical analysis of the stability. Chapter 2 presents details on the digital quantization technique, and a mathematical proof of the absence of spurious tones. In chapter 3, results from an implemented circuit are presented, which verify the behaviour of the technique presented in chapter 1.

Book Phaselock Techniques

    Book Details:
  • Author : Floyd M. Gardner
  • Publisher : John Wiley & Sons
  • Release : 2005-08-08
  • ISBN : 0471732680
  • Pages : 449 pages

Download or read book Phaselock Techniques written by Floyd M. Gardner and published by John Wiley & Sons. This book was released on 2005-08-08 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: A greatly revised and expanded account of phaselock technology The Third Edition of this landmark book presents new developments in the field of phaselock loops, some of which have never been published until now. Established concepts are reviewed critically and recommendations are offered for improved formulations. The work reflects the author's own research and many years of hands-on experience with phaselock loops. Reflecting the myriad of phaselock loops that are now found in electronic devices such as televisions, computers, radios, and cell phones, the book offers readers much new material, including: * Revised and expanded coverage of transfer functions * Two chapters on phase noise * Two chapters examining digital phaselock loops * A chapter on charge-pump phaselock loops * Expanded discussion of phase detectors and of oscillators * A chapter on anomalous phaselocking * A chapter on graphical aids, including Bode plots, root locus plots, and Nichols charts As in the previous editions, the focus of the book is on underlying principles, which remain valid despite technological advances. Extensive references guide readers to additional information to help them explore particular topics in greater depth. Phaselock Techniques, Third Edition is intended for practicing engineers, researchers, and graduate students. This critically acclaimed book has been thoroughly updated with new information and expanded for greater depth.

Book A Jitter cleaning Fractional N Frequency Synthesizer with 10 Hz 40 KHz Digitally Programmable Loop Bandwidth

Download or read book A Jitter cleaning Fractional N Frequency Synthesizer with 10 Hz 40 KHz Digitally Programmable Loop Bandwidth written by Chih-Wei Yao and published by . This book was released on 2012 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation contains three parts. In the first part, the analysis and circuits of a jittercleaning fractional-N frequency synthesizer is presented. In the second part, a low phase noise and low I/Q mismatch quadrature VCO is presented. In the third part, a low phase noise digital PLL is presented. For the first part, the design utilizes a dual-loop architecture, which is suitable for integration in an SoC environment. The primary loop is a digital PLL with a second-order noise shaping phase-error ADC. The secondary loop is a fractional-N PLL implementing the digitally controlled oscillator inside the primary loop, and it locks to an external clean reference clock to reduce the phase noise and to improve the frequency stability of the on-chip oscillator. For the second part, a tail-tank coupling technique that combines two complementary differential LC-VCOs to form a quadrature LC-VCO is presented. This technique reduces phase noise by providing additional energy storages for noise redistribution and by canceling out most of the noise injected by transistors when they operate in the triode region. The resulting noise factor is close to the theoretical minimum value. For the third part, a 2.8 to 3.2 GHz fractional-N digital PLL is presented. A divider with two-stage retiming improves linearity to reduce fractional spurs without increasing the in-band noise floor. An ADC is employed to boost TDC resolution by five times to achieve 2 ps effective resolution. A dither-less DCO with an inductively coupled fine-tune varactor bank improves tuning step-size to 20 kHz. With a 52 MHz reference clock and a loop-bandwidth of 950 kHz, this prototype achieves 230 fs rms jitter integrated from 1 kHz to 40 MHz offset while drawing 17 mW from a 1.8V supply. A FOM of -240.4 dB is achieved.

Book Digital Frequency Synthesis Demystified

Download or read book Digital Frequency Synthesis Demystified written by Bar-Giora Goldberg and published by Newnes. This book was released on 1999 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface; Introduction to frequency synthesis; Frequency synthesizer system analysis; Measurement techniques; DDS general architecture; Phase-locked loop synthesizers; Accumulators; Lockup table and sine rom compression; Digital to analog converters; Synthesizers in use and reference generators; Index.

Book Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission

Download or read book Digital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission written by Nereo Markulic and published by Springer. This book was released on 2019-01-30 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains concepts behind fractional subsampling-based frequency synthesis that is re-shaping today’s art in the field of low-noise LO generation. It covers advanced material, giving clear guidance for development of background-calibrated environments capable of spur-free synthesis and wideband phase modulation. It further expands the concepts into the field of subsampling polar transmission, where the newly developed architecture enables unprecedented spectral efficiency levels, unquestionably required by the upcoming generation of wireless standards.

Book Pll Performance  Simulation and Design

Download or read book Pll Performance Simulation and Design written by Dean Banerjee and published by Dog Ear Publishing. This book was released on 2006-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.

Book Advanced Frequency Synthesis by Phase Lock

Download or read book Advanced Frequency Synthesis by Phase Lock written by William F. Egan and published by John Wiley & Sons. This book was released on 2011-10-07 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest frequency synthesis techniques, including sigma-delta,Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen inpopularity over the past decade due to its intensely digital natureand its ability to promote miniaturization. A continuation of thepopular Frequency Synthesis by Phase Lock, Second Edition, thistimely resource provides a broad introduction to sigma-delta bypairing practical simulation results with cutting-edge research.Advanced Frequency Synthesis by Phase Lock discusses bothsigma-delta and fractional-n—the still-in-use forerunner tosigma-delta—employing Simulink® models and detailedsimulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs areproduced at the synthesizer output by the basic process anddifferent methods for overcoming them. It investigates how variousdefects in sigma-delta synthesis contribute to spurs or noise inthe synthesized signal. Synthesizer configurations are analyzed,and it is revealed how to trade off the various noise sources bychoosing loop parameters. Other sigma-delta synthesis architecturesare then reviewed. The Simulink simulation models that provided data for thepreceding discussions are described, providing guidance in makinguse of such models for further exploration. Next, another methodfor achieving wide loop bandwidth simultaneously with fineresolution—the Diophantine Frequency Synthesizer—isintroduced. Operation at extreme bandwidths is also covered,further describing the analysis of synthesizers that push theirbandwidths close to the sampling-frequency limit. Lastly, the bookreviews a newly important technology that is poised to becomewidely used in high-production consumerelectronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on variousstages of development, and many related resources are available fordownload, including Simulink models, MATLAB® scripts,spreadsheets, and executable programs. All these features make thisauthoritative reference ideal for electrical engineers who want toachieve an understanding of sigma-delta frequency synthesis and anawareness of the latest developments in the field.