Download or read book Multilinear Subspace Learning written by Haiping Lu and published by CRC Press. This book was released on 2013-12-11 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniqu
Download or read book Bio inspired computation and its applications written by Tinggui Chen and published by Frontiers Media SA. This book was released on 2023-07-06 with total page 939 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Computing and Data Sciences written by Mayank Singh and published by Springer. This book was released on 2017-07-19 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Advances in Computing and Data Sciences, ICACDS 2016, held in Ghaziabad, India, in November 2016. The 64 full papers were carefully reviewed and selected from 502 submissions. The papers are organized in topical sections on Advanced Computing; Communications; Informatics; Internet of Things; Data Sciences.
Download or read book Modern Approaches for Intelligent Information and Database Systems written by Andrzej Sieminski and published by Springer. This book was released on 2018-02-23 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unique blend of reports on both theoretical models and their applications in the area of Intelligent Information and Database Systems. The reports cover a broad range of research topics, including advanced learning techniques, knowledge engineering, Natural Language Processing (NLP), decision support systems, Internet of things (IoT), computer vision, and tools and techniques for Intelligent Information Systems. They are extended versions of papers presented at the ACIIDS 2018 conference (10th Asian Conference on Intelligent Information and Database Systems), which was held in Dong Hoi City, Vietnam on 19–21 March 2018. What all researchers and students of computer science need is a state-of-the-art report on the latest trends in their respective areas of interest. Over the years, researchers have proposed increasingly complex theoretical models, which provide the theoretical basis for numerous applications. The applications, in turn, have a profound influence on virtually every aspect of human activities, while also allowing us to validate the underlying theoretical concepts.
Download or read book Subspace Identification for Linear Systems written by Peter van Overschee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.
Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 1948 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Principal Component Analysis written by I.T. Jolliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.
Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a
Download or read book Seventh International Conference on Pattern Recognition written by and published by . This book was released on 1984 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Data Driven Fault Detection and Reasoning for Industrial Monitoring written by Jing Wang and published by Springer Nature. This book was released on 2022-01-03 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book Independent Component Analysis written by Aapo Hyvärinen and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Download or read book Analyzing Compositional Data with R written by K. Gerald van den Boogaart and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package “compositions,” it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software. The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.
Download or read book Subspace Methods of Pattern Recognition written by Erkki Oja and published by John Wiley & Sons. This book was released on 1983 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses the fundamentals of subspace methods & the different approaches taken; concentrates on the learning subspace method used for automatic speech recognition & more generally for the classification of spectra.
Download or read book Government Reports Announcements Index written by and published by . This book was released on 1982-12 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperspectral Data Processing written by Chein-I Chang and published by John Wiley & Sons. This book was released on 2013-02-01 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.