Download or read book Systems with Small Dissipation written by Vladimir Borisovich Braginskiĭ and published by University of Chicago Press. This book was released on 1985 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Systems with Small Dissipation written by V. B. Braginsky and published by . This book was released on 1985 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic and mechanical oscillators are crucial in such diverse fields as electrical engineering, microwave technology, optical technology, and experimental physics. For example, such oscillators are the key elements in instruments for detecting extremely weak mechanical forces and electromagnetic signals are essential to highly stable standards of time and frequency. The central problem in developing such instruments is to construct oscillators that are as perfectly simple harmonic as possible; the largest obstacle is the oscillator's dissipation and the fluctuating forces associated with it. This book, first published in Russian in 1981 and updated with new data for this English edition, is a treatise on the sources of dissipation and other defects in mechanical and electromagnetic oscillators and on practical techniques for minimizing such defects. Written by a team of researchers from Moscow State University who are leading experts in the field, the book is a virtual encyclopedia of theoretical formulas, experimental techniques, and practical lore derived from twenty-five years of experience. Intended for the experimenter who wishes to construct near-perfect instrumentation, the book provides information on everything from the role of phonon-phonon scattering as a fundamental source of dissipation to the effectiveness of a thin film of pork fat in reducing the friction between a support wire and a mechanically oscillating sapphire crystal. The researchers that V. B. Braginsky has led since the mid-1960s are best known in the West for their contributions to the technology of gravitational-wave detection, their experimental search for quarks, their test of the equivalency principle, and their invention of new experimental techniques for high-precision measurement, including "quantum nondemolition movements." Here, for the first time, they provide a thorough overview of the practical knowledge and experimental methods that have earned them a worldwide reputation for ingenuity, talent, and successful technique.
Download or read book Irreversibility and Dissipation in Microscopic Systems written by Édgar Roldán and published by Springer. This book was released on 2014-06-13 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: After an insightful introductory part on recent developments in the thermodynamics of small systems, the author presents his contribution to a long-standing problem, namely the connection between irreversibility and dissipation. He develops a method based on recent results on fluctuation theorems that is able to estimate dissipation using only information acquired in a single, sufficiently long, trajectory of a stationary nonequilibrium process. This part ends with a remarkable application of the method to the analysis of biological data, in this case, the fluctuations of a hair bundle. The third part studies the energetics of systems that undergo symmetry breaking transitions. These theoretical ideas lead to, among other things, an experimental realization of a Szilard engine using manipulated colloids. This work has the potential for important applications ranging from the analysis of biological media to the design of novel artificial nano-machines.
Download or read book Recent Advances in the Design of Structures with Passive Energy Dissipation Systems written by Giuseppe Ricciardi and published by MDPI. This book was released on 2020-06-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.
Download or read book Applications of Closed cycle Cryocoolers to Small Superconducting Devices written by United States. National Bureau of Standards and published by . This book was released on 1978 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinearity in Energy Harvesting Systems written by Elena Blokhina and published by Springer. This book was released on 2016-11-10 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a single-source guide to nonlinearity and nonlinear techniques in energy harvesting, with a focus on vibration energy harvesters for micro and nanoscale applications. The authors demonstrate that whereas nonlinearity was avoided as an undesirable phenomenon in early energy harvesters, now it can be used as an essential part of these systems. Readers will benefit from an overview of nonlinear techniques and applications, as well as deeper insight into methods of analysis and modeling of energy harvesters, employing different nonlinearities. The role of nonlinearity due to different aspects of an energy harvester is discussed, including nonlinearity due to mechanical-to-electrical conversion, nonlinearity due to conditioning electronic circuits, nonlinearity due to novel materials (e.g., graphene), etc. Coverage includes tutorial introductions to MEMS and NEMS technology, as well as a wide range of applications, such as nonlinear oscillators and transducers for energy harvesters and electronic conditioning circuits for effective energy processing.
Download or read book Dissipative Systems Analysis and Control written by Bernard Brogliato and published by Springer. This book was released on 2019-07-03 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Dissipative Systems Analysis and Control has been substantially reorganized to accommodate new material and enhance its pedagogical features. It examines linear and nonlinear systems with examples of both in each chapter. Also included are some infinite-dimensional and nonsmooth examples. Throughout, emphasis is placed on the use of the dissipative properties of a system for the design of stable feedback control laws.
Download or read book Controlling Chaos and Bifurcations in Engineering Systems written by Guanrong Chen and published by CRC Press. This book was released on 1999-09-28 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, chaos in engineering systems has moved from being simply a curious phenomenon to one with real, practical significance and utility. Engineers, scientists, and mathematicians have similarly advanced from the passive role of analyzing chaos to their present, active role of controlling chaos-control directed not only at suppression, but also at exploiting its enormous potential. We now stand at the threshold of major advances in the control and synchronization of chaos for new applications across the range of engineering disciplines. Controlling Chaos and Bifurcations in Engineering Systems provides a state-of-the-art survey of the control-and anti-control-of chaos in dynamical systems. Internationally known experts in the field join forces in this volume to form this tutorial-style combination of overview and technical report on the latest advances in the theory and applications of chaos control. They detail various approaches to control and show how designers can use chaos to create a wider variety of properties and greater flexibility in the design process. Chaos control promises to have a major impact on novel time- and energy-critical engineering applications. Within this volume, readers will find many challenging problems-yet unsolved-regarding both the fundamental theory and potential applications of chaos control and anti-control. Controlling Chaos and Bifurcations in Engineering Systems will bring readers up-to-date on recent development in the field and help open the door to new advances.
Download or read book Matrix Methods written by Vadim Olshevsky and published by World Scientific. This book was released on 2010 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operators preserving primitivity for matrix pairs / L.B. Beasley, A.E. Guterman -- Decompositions of quaternions and their matrix equivalents / D. Janovská, G. Opfer -- Sensitivity analysis of Hamiltonian and reversible systems prone to dissipation-induced instabilities / O.N. Kirillov -- Block triangular miniversal deformations of matrices and matrix pencils / L. Klimenko, V.V. Sergeichuk -- Determining the Schein rank of boolean matrices / E.E. Marenich -- Lattices of matrix rows and matrix columns. Lattices of invariant column eigenvectors / V. Marenich -- Matrix algebras and their length / O.V. Markova -- On a new class of singular nonsymmetric matrices with nonnegative integer spectra / T. Nahtman, D. von Rosen -- Reduction of a set of matrices over a principal ideal domain to the Smith normal forms by means of the same one-sided transformation / V.M. Prokip -- Nonsymmetric algebraic Riccati equations associated with an M-matrix : recent advances and algorithms / D.A. Bini, B. Iannazzo, B. Meini, F. Poloni -- A generalized conjugate direction method for nonsymmetric large ill-conditioned linear systems / E.R. Boudinov, A.I. Manevich -- There exist normal Hankel ([symbol], [symbol])-circulants of any order [symbol] / V.N. Chugunov, Kh. D. Ikramov -- On the treatment of boundary artifacts in image restoration by reflection and/or anti-reflection / M. Donatelli, S. Serra-Capizzano -- Zeros of determinants of [symbol]-matrices / W. Gander -- How to find a good submatrix / S.A. Goreinov [und weiteren] -- Conjugate and semi-conjugate direction methods with preconditioning projectors / V.P. Il'in -- Some relationships between optimal preconditioner and superoptimal preconditioner / J.-B. Chen [und weiteren] -- Scaling, preconditioning, and superlinear convergence in GMRES-type iterations / I. Kaporin -- Toeplitz and Toeplitz-block-Toeplitz matrices and their correlation with syzygies of polynomials / H. Khalil, B. Mourrain, M. Schatzman -- Concepts of data-sparse tensor-product approximation in many-particle modelling / H.-J. Flad [und weiteren] -- Separation of variables in nonlinear fermi equation / Yu. I. Kuznetsov -- Faster multipoint polynomial evaluation via structured matrices / B. Murphy, R.E. Rosholt -- Testing pivoting policies in Gaussian elimination / B. Murphy [und weiteren] -- Newton's iteration for matrix inversion, advances and extensions / V.Y. Pan -- Truncated decompositions and filtering methods with reflective/antireflective boundary conditions : a comparison / C. Tablino Possio -- Discrete-time stability of a class of hermitian polynomial matrices with positive semidefinite coefficients / H.K. Wimmer -- Splitting algorithm for solving mixed variational inequalities with inversely strongly monotone operators / I. Badriev, O. Zadvornov -- Multilevel algorithm for graph partitioning / N.S. Bochkarev, O.V. Diyankov, V.Y. Pravilnikov -- 2D-extension of singular spectrum analysis : algorithm and elements of theory / N.E. Golyandina, K.D. Usevich -- Application of radon transform for fast solution of boundary value problems for elliptic PDE in domains with complicated geometry / A.I. Grebennikov -- Application of a multigrid method to solving diffusion-type equations / M.E. Ladonkina, O. Yu. Milukova, V.F. Tishkin -- Monotone matrices and finite volume schemes for diffusion problems preserving non-negativity of solution / I.V. Kapyrin -- Sparse approximation of FEM matrix for sheet current integro-differential equation / M. Khapaev, M. Yu. Kupriyanov -- The method of magnetic field computation in presence of an ideal conductive multiconnected surface by using the integro-differential equation of the first kind / T. Kochubey, V.I. Astakhov -- Spectral model order reduction preserving passivity for large multiport RCLM networks / Yu. M. Nechepurenko, A.S. Potyagalova, I.A. Karaseva -- New smoothers in multigrid methods for strongly nonsymmetric linear systems / G.V. Muratova, E.M. Andreeva -- Operator equations for eddy currents on singular carriers / J. Naumenko -- Matrix approach to modelling of polarized radiation transfer in heterogeneous systems / T.A. Sushkevich, S.A. Strelkov, S.V. Maksakova -- The Method of Regularization of Tikhonov Based on Augmented Systems / A.I. Zhdanov, T.G. Parchaikina
Download or read book Adaptability written by M. Conrad and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dynamical Phase Transitions in Chaotic Systems written by Edson Denis Leonel and published by Springer Nature. This book was released on 2023-08-14 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses some scaling properties and characterizes two-phase transitions for chaotic dynamics in nonlinear systems described by mappings. The chaotic dynamics is determined by the unpredictability of the time evolution of two very close initial conditions in the phase space. It yields in an exponential divergence from each other as time passes. The chaotic diffusion is investigated, leading to a scaling invariance, a characteristic of a continuous phase transition. Two different types of transitions are considered in the book. One of them considers a transition from integrability to non-integrability observed in a two-dimensional, nonlinear, and area-preserving mapping, hence a conservative dynamics, in the variables action and angle. The other transition considers too the dynamics given by the use of nonlinear mappings and describes a suppression of the unlimited chaotic diffusion for a dissipative standard mapping and an equivalent transition in the suppression of Fermi acceleration in time-dependent billiards. This book allows the readers to understand some of the applicability of scaling theory to phase transitions and other critical dynamics commonly observed in nonlinear systems. That includes a transition from integrability to non-integrability and a transition from limited to unlimited diffusion, and that may also be applied to diffusion in energy, hence in Fermi acceleration. The latter is a hot topic investigated in billiard dynamics that led to many important publications in the last few years. It is a good reference book for senior- or graduate-level students or researchers in dynamical systems and control engineering, mathematics, physics, mechanical and electrical engineering.
Download or read book Generic EIS for Nuclear Power Plant Operating Licenses Renewal written by and published by . This book was released on 1996 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integrated Circuit and System Design Power and Timing Modeling Optimization and Simulation written by Jorge Juan Chico and published by Springer. This book was released on 2003-10-02 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: Welcome to the proceedings of PATMOS 2003. This was the 13th in a series of international workshops held in several locations in Europe. Over the years, PATMOS has gained recognition as one of the major European events devoted to power and timing aspects of integrated circuit and system design. Despite its signi?cant growth and development, PATMOS can still be considered as a very informal forum, featuring high-level scienti?c presentations together with open discussions and panel sessions in a free and relaxed environment. This year, PATMOS took place in Turin, Italy, organized by the Politecnico di Torino, with technical co-sponsorship from the IEEE Circuits and Systems Society and the generous support of the European Commission, as well as that of several industrial sponsors, including BullDAST, Cadence, Mentor Graphics, STMicroelectronics, and Synopsys. The objective of the PATMOS workshop is to provide a forum to discuss and investigate the emerging problems in methodologies and tools for the design of new generations of integrated circuits and systems. A major emphasis of the technical program is on speed and low-power aspects, with particular regard to modeling, characterization, design, and architectures.
Download or read book Symmetry And Perturbation Theory Proceedings Of The International Conference On Spt2007 written by Giuseppe Gaeta and published by World Scientific. This book was released on 2007-11-12 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil'shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii.
Download or read book Symmetry and Perturbation Theory written by Giuseppe Gaeta and published by World Scientific. This book was released on 2008 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume is devoted to the interplay of symmetry and perturbation theory, as well as to cognate fields such as integrable systems, normal forms, n-body dynamics and choreographies, geometry and symmetry of differential equations, and finite and infinite dimensional dynamical systems. The papers collected here provide an up-to-date overview of the research in the field, and have many leading scientists in the field among their authors, including: D Alekseevsky, S Benenti, H Broer, A Degasperis, M E Fels, T Gramchev, H Hanssmann, J Krashil''shchik, B Kruglikov, D Krupka, O Krupkova, S Lombardo, P Morando, O Morozov, N N Nekhoroshev, F Oliveri, P J Olver, J A Sanders, M A Teixeira, S Terracini, F Verhulst, P Winternitz, B Zhilinskii. Sample Chapter(s). Foreword (101 KB). Chapter 1: Homogeneous Bi-Lagrangian Manifolds and Invariant Monge-Ampere Equations (415 KB). Contents: On Darboux Integrability (I M Anderson et al.); Computing Curvature without Christoffel Symbols (S Benenti); Natural Variational Principles (D Krupka); Fuzzy Fractional Monodromy (N N Nekhoroshev); Emergence of Slow Manifolds in Nonlinear Wave Equations (F Verhulst); Complete Symmetry Groups and Lie Remarkability (K Andriopoulos); Geodesically Equivalent Flat Bi-Cofactor Systems (K Marciniak); On the Dihedral N-Body Problem (A Portaluri); Towards Global Classifications: A Diophantine Approach (P van der Kamp); and other papers. Readership: Researchers and students (graduate/advanced undergraduates) in mathematics, applied mathematics, physics and nonlinear science.
Download or read book Handbook of Nanophysics written by Klaus D. Sattler and published by CRC Press. This book was released on 2010-09-17 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color.This
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.