EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Enhanced Energy Harvesting in Grid Connected Photovoltaic Systems

Download or read book Enhanced Energy Harvesting in Grid Connected Photovoltaic Systems written by Kyrie Petrakis and published by . This book was released on 2024-02-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In "Enhanced Energy Harvesting in Grid-Connected Photovoltaic Systems," Kyrie Petrakis delves into the forefront of renewable energy technology, offering a comprehensive exploration of advanced strategies to optimize energy harvesting in photovoltaic (PV) systems. This groundbreaking book is an invaluable resource for engineers, researchers, and enthusiasts seeking to maximize the efficiency and sustainability of grid-connected solar power. Petrakis begins by providing a thorough understanding of conventional PV systems before navigating through cutting-edge enhancements. From novel materials and innovative design methodologies to intelligent control systems and real-time monitoring, the author unveils a spectrum of techniques to elevate the performance of grid-connected PV systems. Drawing on extensive research and practical insights, Petrakis elucidates the nuances of energy harvesting, storage, and distribution within the context of a smart grid. This meticulously crafted work not only elucidates the theoretical underpinnings of enhanced energy harvesting but also offers practical guidelines for implementing these advancements. With a balance of theoretical rigor and practical applicability, Kyrie Petrakis's "Enhanced Energy Harvesting in Grid-Connected Photovoltaic Systems" emerges as a beacon for ushering in a new era of sustainable and efficient solar energy utilization.

Book Concentrator Photovoltaics

Download or read book Concentrator Photovoltaics written by Antonio Luque López and published by Springer. This book was released on 2007-08-17 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. It is an application-oriented book. The authors report on significant results related to design, technology, and applications, and they also cover the fundamental physics and market considerations.

Book The Effects of Dust and Heat on Photovoltaic Modules  Impacts and Solutions

Download or read book The Effects of Dust and Heat on Photovoltaic Modules Impacts and Solutions written by Amir Al-Ahmed and published by Springer Nature. This book was released on 2021-11-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses how to reduce the impact of dust and heat on photovoltaic systems. It presents the problems caused by both dust accumulation and heat on PV systems, as well as the solutions, in a collected piece of literature. The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions begins by discussing the properties of dust accumulation on PV modules. It then presents several solutions to this, such as hydrophobic coatings and surface texturing. The second half of the book is used to discuss the effects of heat on silicon PV modules, as well as various cooling approaches. These include water cooling and carbon-based materials. Due to the prevalence of PV systems in renewable energy, this book will be of interest to numerous students, researchers and practitioners.

Book Hybrid and Fully Thermoelectric Solar Harvesting

Download or read book Hybrid and Fully Thermoelectric Solar Harvesting written by Dario Narducci and published by Springer. This book was released on 2018-03-26 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview on fully thermal and hybrid solar generators based on thermoelectric devices. The book fills a gap in the literature on solar conversion and thermoelectrics, because despite the growing number of papers dealing with the use of thermoelectrics in solar power conversion, no book exists for PV specialists or thermoelectricity experts to enter this field. The book is intended as a primer for scientists or engineers willing to complement their expertise in one of the two fields, and to get an updated, critical review of the state of the art in thermoelectric solar harvesting.

Book Thermoelectrics

Download or read book Thermoelectrics written by G.S. Nolas and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth analysis of thermoelectric theory, an overview of present day thermoelectric materials and devices, and updated information on the most studied thermoelectric materials development. The main emphasis is on a basic understanding of the concepts as well as experimental techniques needed to propel researchers towards new and novel classes of thermoelectric materials with enhanced properties.

Book ICT   Energy Concepts for Energy Efficiency and Sustainability

Download or read book ICT Energy Concepts for Energy Efficiency and Sustainability written by Giorgos Fagas and published by BoD – Books on Demand. This book was released on 2017-03-22 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a previous volume (ICT-Energy-Concepts Towards Zero-Power ICT; referenced below as Vol. 1), we addressed some of the fundamentals related to bridging the gap between the amount of energy required to operate portable/mobile ICT systems and the amount of energy available from ambient sources. The only viable solution appears to be to attack the gap from both sides, i.e. to reduce the amount of energy dissipated during computation and to improve the efficiency in energy-harvesting technologies. In this book, we build on those concepts and continue the discussion on energy efficiency and sustainability by addressing the minimisation of energy consumption at different levels across the ICT system stack, from hardware to software, as well as discussing energy consumption issues in high-performance computing (HPC), data centres and communication in sensor networks. This book was realised thanks to the contribution of the project ‘Coordinating Research Efforts of the ICT-Energy Community’ funded from the European Union under the Future and Emerging Technologies (FET) area of the Seventh Framework Programme for Research and Technological Development (grant agreement n. 611004).

Book Concentrating Solar Power Technology

Download or read book Concentrating Solar Power Technology written by Keith Lovegrove and published by Woodhead Publishing. This book was released on 2020-12-15 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Concentrating Solar Power Technology edited by Keith Lovegrove and Wes Stein presents a fully updated comprehensive review of the latest technologies and knowledge, from the fundamental science to systems design, development, and applications. Part one introduces the fundamental principles of CSP systems, including site selection and feasibility analysis, alongside socio-economic and environmental assessments. Part two focuses on technologies including linear Fresnel reflector technology, parabolic-trough, central tower, and parabolic dish CSP systems, and concentrating photovoltaic systems. Thermal energy storage, hybridization with fossil fuel power plants, and the long-term market potential of CSP technology are also explored. Part three goes on to discuss optimization, improvements, and applications, such as absorber materials for solar thermal receivers, design optimization through integrated techno-economic modelling, and heliostat size optimization. With its distinguished editors and international team of expert contributors, Concentrating Solar Power Technology, 2nd Edition is an essential guide for all those involved or interested in the design, production, development, optimization, and application of CSP technology, including renewable energy engineers and consultants, environmental governmental departments, solar thermal equipment manufacturers, researchers, and academics. Provides a comprehensive review of concentrating solar power (CSP) technology, from the fundamental science to systems design, development and applications Reviews fundamental principles of CSP systems, including site selection and feasibility analysis and socio-economic and environmental assessments Includes an overview of the key technologies of parabolic-trough, central tower linear Fresnel reflector, and parabolic dish CSP systems, and concentrating photovoltaic systems

Book Energy Harvesting

    Book Details:
  • Author : Alireza Khaligh
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351834029
  • Pages : 529 pages

Download or read book Energy Harvesting written by Alireza Khaligh and published by CRC Press. This book was released on 2017-12-19 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.

Book Handbook of Research on Solar Energy Systems and Technologies

Download or read book Handbook of Research on Solar Energy Systems and Technologies written by Anwar, Sohail and published by IGI Global. This book was released on 2012-08-31 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.

Book Practical Solar Tracking Automatic Solar Tracking Sun Tracking

Download or read book Practical Solar Tracking Automatic Solar Tracking Sun Tracking written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details Practical Solar Energy Harvesting, Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems using motorized automatic positioning concepts and control principles. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously. In general, the book may benefit solar research and solar energy applications in countries such as Africa, Mediterranean, Italy, Spain, Greece, USA, Mexico, South America, Brazilia, Argentina, Chili, India, Malaysia, Middle East, UAE, Russia, Japan and China. This book on practical automatic Solar-Tracking Sun-Tracking is in .PDF format and can easily be converted to the .EPUB .MOBI .AZW .ePub .FB2 .LIT .LRF .MOBI .PDB .PDF .TCR formats for smartphones and Kindle by using the ebook.online-convert.com facility. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller. В этой книге подробно Автоматическая Solar-Tracking, ВС-Tracking-Systems, Solar-трекеры и ВС Tracker Systems. Интеллектуальный автоматический солнечной слежения является устройством, которое ориентирует полезную нагрузку к солнцу. Такое программируемый компьютер на основе солнечной устройство слежения включает принципы солнечной слежения, солнечных систем слежения, а также микроконтроллер, микропроцессор и / или ПК на базе управления солнечной отслеживания ориентироваться солнечных отражателей, солнечные линзы, фотоэлектрические панели или другие оптические конфигурации к ВС Моторизованные космические кадры и кинематические системы обеспечения динамики движения и использовать приводной техники и готовится принципы, чтобы направить оптические конфигурации, такие как Манжен, параболических, конических или Кассегрена солнечных коллекторов энергии, чтобы лицом к солнцу и следовать за солнцем контур движения непрерывно. В обуздывать силу от солнца через солнечный трекер или практической солнечной системы слежения, системы возобновляемых контроля энергии автоматизации требуют автоматического солнечной отслеживания программного обеспечения и алгоритмов солнечные позиции для достижения динамического контроля движения с архитектуры автоматизации управления, печатных плат и аппаратных средств. На оси системы слежения ВС, таких как высота-азимут двойной оси или многоосевые солнечные системы трекер использовать алгоритм отслеживания солнце или трассировки лучей датчиков или программное обеспечение, чтобы обеспечить прохождение солнца по небу прослеживается с высокой точностью в автоматизированных приложений Солнечная Tracker , прямо через летнего солнцестояния, солнечного равноденствия и зимнего солнцестояния.Высокая точность позиции ВС калькулятор или положение солнца алгоритм это важный шаг в проектировании и строительстве автоматической системой солнечной слежения. 這本書詳細介紹了全自動太陽能跟踪,太陽跟踪系統的出現,太陽能跟踪器和太陽跟踪系統。智能全自動太陽能跟踪器是定向向著太陽的有效載荷設備。這種可編程計算機的太陽能跟踪裝置,包括太陽跟踪,太陽能跟踪系統,以及微控制器,微處理器和/或基於PC機的太陽跟踪控制,以定向太陽能反射器,太陽透鏡,光電板或其他光學配置朝向太陽的原理。機動空間框架和運動系統,確保運動動力學和採用的驅動技術和傳動原理引導光學配置,如曼金,拋物線,圓錐曲線,或卡塞格林式太陽能集熱器面向太陽,不斷跟隨太陽運動的輪廓。 從陽光透過太陽能跟踪器或實用的太陽能跟踪系統利用電力,可再生能源控制的自動化系統需要自動太陽跟踪軟件和太陽位置算法來實現控制與自動化架構,電路板和硬件的動態運動控制。上軸太陽跟踪系統,如高度,方位角雙軸或多軸太陽跟踪系統使用太陽跟踪算法或光線追踪傳感器或軟件,以確保通過天空中太陽的通道被跟踪的高精度的自動太陽跟踪器的應用,通過正確的夏至,春分太陽和冬至。一種高精度太陽位置計算器或太陽位置算法是這樣的自動太陽能跟踪系統的設計和施工中的重要一步。

Book Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar autom  tico de seguimiento solar

Download or read book Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar autom tico de seguimiento solar written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Solar Tracking Sun Tracking : This book details Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously (seguimiento solar y automatización, automatización seguidor solar, tracking solar e automação, automação seguidor solar, inseguimento solare, inseguitore solare, energia termica, sole seguito, posizionatore motorizzato) In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. The book also describes the use of satellite tracking software and mechanisms in solar tracking applications. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller.

Book Recent Development in Energy Conversion Systems

Download or read book Recent Development in Energy Conversion Systems written by Sunday Olayinka Oyedepo and published by Frontiers Media SA. This book was released on 2024-03-15 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this industrial and technological age, energy plays a principal role in sustainable development. This is connected to issues regarding availability, production processes, utilization, and environmental impact. Due to the increased rate of population growth, the energy demand in the entire world is getting to the level that it may not be sustained in the nearest future if drastic action is not taken to address the situation, especially from research and development perspectives. "None of the millennium development goals (MDGs) can be completed without considerable improvements in the quality and quantity of energy services in developing countries," according to the United Nations Development Programme (UNDP). Based on this fact, UNDP is making efforts, especially in developing countries to ensure that people have access to sustainable sources of clean, reliable, and affordable energy since every aspect of human development is highly impacted by this vital resource.

Book Micro Energy Harvesting

Download or read book Micro Energy Harvesting written by Danick Briand and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Book Green Energy Advances

Download or read book Green Energy Advances written by Diana Enescu and published by . This book was released on 2019-02 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to understanding the development and application of green energy solutions. The term ""green energy"" is widely used today to indicate sustainable energy sources with zero or minimal environmental and economic impact, obtained from various renewable energy sources. The contents presented in this book deal with different solutions, from small-scale applications (thermoelectric energy harvesting) to energy efficiency in buildings with local renewable energy production (also in critical seismic sites), local energy systems (smart energy management of storage and complex interactions), exploitation of biomasses from agricultural wastes, and voluntary certifications associated with energy trading in large energy systems. These aspects mark a more sustainable evolution of the society with wider green energy usage.

Book The Physics Of Solar Cells

    Book Details:
  • Author : Jenny A Nelson
  • Publisher : World Scientific Publishing Company
  • Release : 2003-05-09
  • ISBN : 1848168233
  • Pages : 387 pages

Download or read book The Physics Of Solar Cells written by Jenny A Nelson and published by World Scientific Publishing Company. This book was released on 2003-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.

Book Materials for Sustainable Energy

Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.