EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Basic Concepts of Synthetic Differential Geometry

Download or read book Basic Concepts of Synthetic Differential Geometry written by R. Lavendhomme and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians.

Book Synthetic Differential Geometry

Download or read book Synthetic Differential Geometry written by Anders Kock and published by Cambridge University Press. This book was released on 2006-06-22 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2006, details how limit processes can be represented algebraically.

Book Synthetic Geometry of Manifolds

Download or read book Synthetic Geometry of Manifolds written by Anders Kock and published by Cambridge University Press. This book was released on 2010 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field.

Book Recent Synthetic Differential Geometry

Download or read book Recent Synthetic Differential Geometry written by Herbert Busemann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthetic approach to intrinsic differential geometry in the large and its connections with the foundations of geometry was presented in "The Geometry of Geodesics" (1955, quoted as G). It is the purpose of the present report to bring this theory up to date. Many of the later ip.vestigations were stimulated by problems posed in G, others concern newtopics. Naturally references to G are frequent. However, large parts, in particular Chapters I and III as weIl as several individual seetions, use only the basic definitions. These are repeated here, sometimes in a slightly different form, so as to apply to more general situations. In many cases a quoted result is quite familiar in Riemannian Geometry and consulting G will not be found necessary. There are two exceptions : The theory of paralleIs is used in Sections 13, 15 and 17 without reformulating all definitions and properties (of co-rays and limit spheres). Secondly, many items from the literature in G (pp. 409-412) are used here and it seemed superfluous to include them in the present list of references (pp. 106-110). The quotations are distinguished by [ ] and ( ), so that, for example, FreudenthaI [1] and (I) are found, respectively, in G and here.

Book Models for Smooth Infinitesimal Analysis

Download or read book Models for Smooth Infinitesimal Analysis written by Ieke Moerdijk and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

Book A Primer of Infinitesimal Analysis

Download or read book A Primer of Infinitesimal Analysis written by John L. Bell and published by Cambridge University Press. This book was released on 2008-04-07 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.

Book Synthetic Differential Topology

Download or read book Synthetic Differential Topology written by Marta Bunge and published by Cambridge University Press. This book was released on 2018-03-29 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Represents the state of the art in the new field of synthetic differential topology.

Book The Continuous  the Discrete and the Infinitesimal in Philosophy and Mathematics

Download or read book The Continuous the Discrete and the Infinitesimal in Philosophy and Mathematics written by John L. Bell and published by Springer Nature. This book was released on 2019-09-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.

Book A History of Geometrical Methods

Download or read book A History of Geometrical Methods written by Julian Lowell Coolidge and published by Courier Corporation. This book was released on 2013-02-27 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons between older and newer methods, and his references to over 600 primary and secondary sources make this book an invaluable reference. 1940 edition.

Book Mathematical Logic and Theoretical Computer Science

Download or read book Mathematical Logic and Theoretical Computer Science written by David Kueker and published by CRC Press. This book was released on 2020-12-22 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Logic and Theoretical Computer Science covers various topics ranging from recursion theory to Zariski topoi. Leading international authorities discuss selected topics in a number of areas, including denotational semanitcs, reccuriosn theoretic aspects fo computer science, model theory and algebra, Automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic. The most up-to-date review available in its field, Mathematical Logic and Theoretical Computer Science will be of interest to mathematical logicians, computer scientists, algebraists, algebraic geometers, differential geometers, differential topologists, and graduate students in mathematics and computer science.

Book Cartan for Beginners

    Book Details:
  • Author : Thomas Andrew Ivey
  • Publisher : American Mathematical Soc.
  • Release : 2003
  • ISBN : 0821833758
  • Pages : 394 pages

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Book Algebraic Geometry over C    Rings

Download or read book Algebraic Geometry over C Rings written by Dominic Joyce and published by American Mathematical Soc.. This book was released on 2019-09-05 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: If X is a manifold then the R-algebra C∞(X) of smooth functions c:X→R is a C∞-ring. That is, for each smooth function f:Rn→R there is an n-fold operation Φf:C∞(X)n→C∞(X) acting by Φf:(c1,…,cn)↦f(c1,…,cn), and these operations Φf satisfy many natural identities. Thus, C∞(X) actually has a far richer structure than the obvious R-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by C∞-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are C∞-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on C∞-schemes, and C∞-stacks, in particular Deligne-Mumford C∞-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C∞-rings and C∞ -schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, “derived” versions of manifolds and orbifolds related to Spivak's “derived manifolds”.

Book Foundations of Differentiable Manifolds and Lie Groups

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Book Categories in Continuum Physics

Download or read book Categories in Continuum Physics written by F. William Lawvere and published by Springer. This book was released on 2006-11-14 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Nonsmooth Differential Geometry

Download or read book Lectures on Nonsmooth Differential Geometry written by Nicola Gigli and published by Springer Nature. This book was released on 2020-02-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.

Book Conceptual Mathematics

    Book Details:
  • Author : F. William Lawvere
  • Publisher : Cambridge University Press
  • Release : 2009-07-30
  • ISBN : 0521894859
  • Pages : 409 pages

Download or read book Conceptual Mathematics written by F. William Lawvere and published by Cambridge University Press. This book was released on 2009-07-30 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.

Book Surface Evolution Equations

Download or read book Surface Evolution Equations written by Yoshikazu Giga and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained introduction to the analytic foundation of a level set approach for various surface evolution equations including curvature flow equations. These equations are important in many applications, such as material sciences, image processing and differential geometry. The goal is to introduce a generalized notion of solutions allowing singularities, and to solve the initial-value problem globally-in-time in a generalized sense. Various equivalent definitions of solutions are studied. Several new results on equivalence are also presented. Moreover, structures of level set equations are studied in detail. Further, a rather complete introduction to the theory of viscosity solutions is contained, which is a key tool for the level set approach. Although most of the results in this book are more or less known, they are scattered in several references, sometimes without proofs. This book presents these results in a synthetic way with full proofs. The intended audience are graduate students and researchers in various disciplines who would like to know the applicability and detail of the theory as well as its flavour. No familiarity with differential geometry or the theory of viscosity solutions is required. Only prerequisites are calculus, linear algebra and some basic knowledge about semicontinuous functions.