EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Characterization of Cycled Spherical Resorcinol Formaldehyde Ion Exchange Resin

Download or read book Characterization of Cycled Spherical Resorcinol Formaldehyde Ion Exchange Resin written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two ≈11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first work to quantify mercury on sRF resin. Resin mercury content is important in plans for the disposition of used sRF resin. Mercury speciation in high level waste (HLW) is unknown. It may be partly organic, one example being methyl mercury cation. Further study of the resin's affinity for mercury is recommended.

Book An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

Download or read book An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A small column ion exchange (SCIX) system has been proposed for removal of cesium from caustic, supernatant, and dissolved salt solutions stored or generated from high-level tank wastes at the US Department of Energy (DOE) Hanford Site and Savannah River Sites. In both instances, deployment of SCIX systems, either in-tank or near-tank, is a means of expediting waste pretreatment and dispositioning with minimal or no new infrastructure requirements. Conceptually, the treatment approach can utilize a range of ion exchange media. Previously, both crystalline silicotitanate (CST), an inorganic, nonelutable sorbent, and resorcinol-formaldehyde (RF), an organic, elutable resin, have been considered for cesium removal from tank waste. More recently, Pacific Northwest National Laboratory (PNNL) evaluated use of SuperLig{reg_sign} 644, an elutable ion exchange medium, for the subject application. Results of testing indicate hydraulic limitations of the SuperLig{reg_sign} resin, specifically a high pressure drop through packed ion exchange columns. This limitation is likely the result of swelling and shrinkage of the irregularly shaped (granular) resin during repeated conversions between sodium and hydrogen forms as the resin is first loaded then eluted. It is anticipated that a similar flow limitation would exist in columns packed with conventional, granular RF resin. However, use of spherical RF resin is a likely means of mitigating processing limitations due to excessive pressure drop. Although size changes occur as the spherical resin is cycled through loading and elution operations, the geometry of the resin is expected to effectively mitigate the close packing that leads to high pressure drops across ion exchange columns. Multiple evaluations have been performed to determine the feasibility of using spherical RF resin and to obtain data necessary for design of an SCIX process. The work performed consisted of examination of radiation effects on resin performance, quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).

Book Storage and Aging Effects on Spherical Resorcinol Formaldehyde Resin Ion Exchange Performance

Download or read book Storage and Aging Effects on Spherical Resorcinol Formaldehyde Resin Ion Exchange Performance written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).() Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).() To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle--Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan() TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL01830.

Book PILOT SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

Download or read book PILOT SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN written by Donald A. Adamson and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead morphology. The skeletal density of the RF resin in the 24 inch IX Column increased slightly with cycling (in both hydrogen and sodium form). The chemical solutions used in the pilot-scale testing remained clear throughout testing, indicating very little chemical breakdown of the RF resin beads. The RF resin particles did not break down and produce fines, which would have resulted in higher pressure drops across the resin bed. Three cesium (Cs) loading tests were conducted on the RF resin in pilot-scale IX columns. Laboratory analyses concluded the Cs in the effluent never exceeded the detection limit. Therefore, there was no measurable degradation in cesium removal performance. Using the pilot-scale systems to add the RF resin to the columns and removing the resin from the columns was found to work well. The resin was added and removed from the columns three times with no operational concerns. Whether the resin was in sodium or hydrogen form, the resin flowed well and resulted in an ideal resin bed formation during each Resin Addition. During Resin Removal, 99+ % of the resin was easily sluiced out of the IX column. The hydraulic performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins, and SRNL testing indicates that the resin should hold up to many cycles in actual radioactive Cs separation. The RF resin was found to be durable in the long term cycle testing and should result in a cost saving in actual operations when compared to other IX resins.

Book An Investigation of the Radiolytic Stability of a Resorcinol  Formaldehyde Ion Exchange Resin

Download or read book An Investigation of the Radiolytic Stability of a Resorcinol Formaldehyde Ion Exchange Resin written by and published by . This book was released on 1993 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiolytic stability of a resorcinol-formaldehyde polycondensation-type cation exchange resin was investigated for up to lE09 rads total dose. The resorcinol-formaldehyde resin is a resin that has potential cesium decontamination applications at Pacific Northwest and Savannah River. We have determined both radiation and storage effects on performance of the resin using 101-AW Hanford simulant and ASTM Type-I water. Distribution coefficient determinations, total carbon analysis, and physical observations lead us to conclude that radiation up to lE08 rads does not significantly affect the performance of the resin. The resin is more stable to radiation in water than in 101-AW Hanford simulant. Also radiation or storage does not affect the thermal stability of the resin. Gas production rates for several resin slurries increased in the order of resin/101-AW Hanford simulant, resin/ASTM water, and resin/0.5 M HNO3. H2 is produced from radiolysis of resin in 101-AW Hanford simulant with a G value of G(H2) of 0.11 " 0.02 molecules/100eV and in 0.5 M HNO3 with a G value of G(H2) of 0.27 " 0.02 molecules/lOOeV.

Book Development of an Approach to Modeling Loading and Elution of Spherical Resorcinol Formaldehyde Ion Exchange Resin

Download or read book Development of an Approach to Modeling Loading and Elution of Spherical Resorcinol Formaldehyde Ion Exchange Resin written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO3). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO3 during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of fixed ionogenic groups that make up sRF. Recent literature reviews and scoping titration tests strongly indicate that sRF is a polyfunctional cation exchange resin with at least three dominant types of ring groups playing a role in its isotherm behavior over the wide pH range of operations. Also three types of fixed ionogenic acid groups are present: sulfonic (SO3H−) groups; carboxylic (COOH−) groups, and resorcylic (OH−) groups. It is this premise that we are working under in the development of a robust isotherm model for sRF over its entire planned pH operating range. The application of prototypic isotherms for modeling ion-exchange column behavior is demonstrated in Section 3 of this report. This preliminary work served to focus the development effort on the use of a mass-action based isotherm. In Section 4 of this report, the foundational material required to develop a robust isotherm model for sRF is provided. The paths taken, and choices made, are given for the reader to better understand our current status with respect to this goal and to highlight our most recent understanding of sRF exchange equilibria. Our ultimate goal is to update the CERMOD code (Aleman and Hamm, 2007) with a robust isotherm model for sRF that spans the entire pH and concentration ranges of planned operations. The isotherm model will then be used in the VERSE-LC code to model an entire ion-exchange cycle.

Book Spherical Resorcinol Formaldehyde Synthesis by Inverse Suspension Polymerization

Download or read book Spherical Resorcinol Formaldehyde Synthesis by Inverse Suspension Polymerization written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Base catalyzed sol-gel polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde by inverse suspension polymerization leads to the formation of uniform, highly cross-linked, translucent, spherical gels, which have increased selectivity and capacity for cesium ion removal from high alkaline solutions. Because of its high selectivity for cesium ion, resorcinol-formaldehyde (R-F) resins are being considered for process scale column radioactive cesium removal by ion-exchange at the Waste Treatment and Immobilization Plant (WTP), which is now under construction at the Hanford site. Other specialty resins such as Superlig{reg_sign} 644 have been ground and sieved and column tested for process scale radioactive cesium removal but show high pressure drops across the resin bed during transition from column regeneration to loading and elution. Furthermore, van Deemter considerations indicate better displacement column chromatography by the use of spherical particle beads rather than irregularly shaped ground or granular particles. In our studies batch contact equilibrium experiments using a high alkaline simulant show a definite increase in cesium loading onto spherical R-F resin. Distribution coefficient (Kd) values ranged from 777 to 429 mL/g in the presence of 0.1M and 0.7M potassium ions, respectively. Though other techniques for making R-F resins have been employed, to our knowledge no one has made spherical R-F resins by inverse suspension polymerization. Moreover, in this study we discuss the data comparisons to known algebraic isotherms used to evaluate ion-exchange resins for WTP plant scale cesium removal operations.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1995 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.

Book Resorcinol Formaldehyde Ion Exchange Resin Chemistry for High Level Waste Treatment

Download or read book Resorcinol Formaldehyde Ion Exchange Resin Chemistry for High Level Waste Treatment written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

Book PILOT SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

Download or read book PILOT SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin hydraulic cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Sixteen of these cycles were completed in the 24-inch IX Column (1/2 scale column). Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 3 times better than the design requirements of the WTP full-scale IX system. The RF resin bed showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. The hydraulic and chemical performance of the spherical RF resin during cycle testing was found to be superior to all other tested IX resins. The pilot-scale testing indicates that the RF resin is durable and should hold up to many hydraulic cycles in actual radioactive Cesium (Cs) separation.

Book Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin

Download or read book Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Government Reports Announcements   Index

Download or read book Government Reports Announcements Index written by and published by . This book was released on 1996 with total page 1268 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Resorcinol

    Book Details:
  • Author : Raj B. Durairaj
  • Publisher : Springer Science & Business Media
  • Release : 2005-12-05
  • ISBN : 3540280901
  • Pages : 765 pages

Download or read book Resorcinol written by Raj B. Durairaj and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resorcinol chemistry has been providing valuable properties and products in the development of advanced technologies in the areas of pharmaceuticals, rubber compounds, wood composites and plastics. Notable technologies include steel belted radial tires, resorcinol-formaldehyde-latex adhesives (RFL), a weather proof polycarbonate (Sollx), a super heat resistant polymer (PEN-RTM), the world's strongest fiber (Zylon), sun screens (UV absorbers), Intal (an asthma drug), Ostivone (an osteoporosis drug), Throat Plus (lozenges), Centron and Saheli (oral contraceptive pills), and many more. This new resorcinol book contains information on the chemistry and technologies developed for the usefulness of human needs. Scientists and researchers around the world working in the areas of pharmaceuticals, rubber compounds (tires, hoses, belts), polymers, polymer additives (UV absorbers, flame retardants), composites (polymers and wood), photoresists, or just simply organic chemistry will benefit from this key resorcinol reference.

Book Phenolic Resins  A Century of Progress

Download or read book Phenolic Resins A Century of Progress written by Louis Pilato and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The legacy of Leo Hendrik Baekeland and his development of phenol formal- hyde resins are recognized as the cornerstone of the Plastics Industry in the early twentieth century, and phenolic resins continue to ?ourish after a century of robust growth. On July 13, 1907, Baekeland ?led his “heat and pressure” patent related to the processing of phenol formaldehyde resins and identi?ed their unique utility in a plethora of applications. The year 2010 marks the Centennial Year of the prod- tion of phenolic resins by Leo Baekeland. In 1910, Baekeland formed Bakelite GmbH and launched the manufacture of phenolic resins in Erkner in May 1910. In October 1910, General Bakelite began producing resins in Perth Amboy, New Jersey. Lastly, Baekeland collaborated with Dr. Takamine to manufacture phenolic resins in Japan in 1911. These events were instrumental in establishing the Plastics Industry and in tracing the identity to the brilliance of Dr. Leo Baekeland. Phenolic resins remain as a versatile resin system featuring either a stable, thermoplastic novolak composition that cures with a latent source of formaldehyde (hexa) or a heat reactive and perishable resole composition that cures thermally or under acidic or special basic conditions. Phenolic resins are a very large volume resin system with a worldwide volume in excess of 5 million tons/year, and its growth is related to the gross national product (GNP) growth rate globally.