Download or read book CVD of Compound Semiconductors written by Anthony C. Jones and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical growth methods of electronic materials are the keystone of microelectronic device processing. This book discusses the applications of metalorganic chemistry for the vapor phase deposition of compound semiconductors. Vapor phase methods used for semiconductor deposition and the materials properties that make the organometallic precursors useful in the electronics industry are discussed for a variety of materials. Topics included: * techniques for compound semiconductor growth * metalorganic precursors for III-V MOVPE * metalorganic precursors for II-VI MOVPE * single-source precursors * chemical beam epitaxy * atomic layer epitaxy Several useful appendixes and a critically selected, up-to-date list of references round off this practical handbook for materials scientists, solid-state and organometallic chemists, and engineers.
Download or read book Synthesis of Compound Semiconducting Materials and Device Applications written by STANFORD UNIV CALIF CENTER FOR MATERIALS RESEARCH. and published by . This book was released on 1973 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: ;Contents: Epitaxial crystal growth; Device applications of GaAs; Relations between dislocations and mechanical properties and the production and characterization of defect structures in compound semiconductors; Scientific aspects of gallium arsenide crystal preparation; The synthesis, characterization and device application of gallium nitride: preparation of GaN light-emitting diodes.
Download or read book Novel Compound Semiconductor Nanowires written by Fumitaro Ishikawa and published by CRC Press. This book was released on 2017-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Download or read book III V Compound Semiconductors and Devices written by Keh Yung Cheng and published by Springer Nature. This book was released on 2020-11-08 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
Download or read book Semiconductors written by Martin I. Pech-Canul and published by Springer. This book was released on 2019-01-17 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.
Download or read book Compound Semiconductors written by Ferdinand Scholz and published by CRC Press. This book was released on 2017-10-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of compound semiconductor materials and their technology. After presenting a theoretical background, it describes the relevant material preparation technologies for bulk and thin-layer epitaxial growth. It then briefly discusses the electrical, optical, and structural properties of semiconductors, complemented by a description of the most popular characterization tools, before more complex hetero- and low-dimensional structures are discussed. A special chapter is devoted to GaN and related materials, owing to their huge importance in modern optoelectronic and electronic devices, on the one hand, and their particular properties compared to other compound semiconductors, on the other. In the last part of the book, the physics and functionality of optoelectronic and electronic device structures (LEDs, laser diodes, solar cells, field-effect and heterojunction bipolar transistors) are discussed on the basis of the specific properties of compound semiconductors presented in the preceding chapters of the book. Compound semiconductors form the back-bone of all opto-electronic and electronic devices besides the classical Si electronics. Currently the most important field is solid state lighting with highly efficient LEDs emitting visible light. Also laser diodes of all wavelength ranges between mid-infrared and near ultraviolet have been the enabler for a huge number of unprecedented applications like CDs and DVDs for entertainment and data storage, not to speak about the internet, which would be impossible without optical data communications with infrared laser diodes as key elements. This book provides a concise overview over this class of materials, including the most important technological aspects for their fabrication and characterisation, also covering the most relevant devices based on compound semiconductors. It presents therefore an excellent introduction into this subject not only for students, but also for engineers and scientist who intend to put their focus on this field of science.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Compound Semiconductor Bulk Materials and Characterizations written by Osamu Oda and published by World Scientific. This book was released on 2007 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with compound semiconductor bulk materials and has been written for students, researchers and engineers in material science and device fabrication. It offers them the elementary and intermediate knowledge of compound semiconductor bulk materials necessary for entering this field. In the first part, the book describes the physical properties, crystal growth technologies, principles of crystal growth, various defects in crystals, characterization techniques and applications. In the second and the third parts, the book reviews various compound semiconductor materials, including important industrial materials and the results of recent research.
Download or read book Chemical Solution Synthesis for Materials Design and Thin Film Device Applications written by Soumen Das and published by Elsevier. This book was released on 2021-01-29 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
Download or read book Nanowires and Nanobelts Materials Properties and Devices written by Zhong Lin Wang and published by Springer Science & Business Media. This book was released on 2010-04-30 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the synthesis, properties and applications of nanowires and nanobelts based on functional materials. Novel devices and applications made from functional oxide nanowires and nanobelts will be presented first, showing their unique properties and applications.
Download or read book Graphene written by Wonbong Choi and published by CRC Press. This book was released on 2016-04-19 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the late 20th century, graphene-a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice-has garnered appreciable attention as a potential next-generation electronic material due to its exceptional properties. These properties include high current density, ballistic transport, chemical inertness,
Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-09-16 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.
Download or read book Physics of Semiconductor Devices written by Vikram Kumar and published by Allied Publishers. This book was released on 2002 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Photocatalytic Semiconductors written by Aracely Hernández-Ramírez and published by Springer. This book was released on 2014-11-17 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.
Download or read book Handbook of Research on Green Synthesis and Applications of Nanomaterials written by Garg, Rajni and published by IGI Global. This book was released on 2022-01-14 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
Download or read book Novel Compound Semiconductor Nanowires written by Fumitaro Ishikawa and published by CRC Press. This book was released on 2017-10-17 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Download or read book Semiconductor Material and Device Characterization written by Dieter K. Schroder and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.