EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Lanthanide Metal Organic Frameworks

Download or read book Lanthanide Metal Organic Frameworks written by Peng Cheng and published by Springer. This book was released on 2015-01-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students.

Book The Synthesis  Characterization and Electronic Properties of Some Alkylaminofluorophosphine Complexes of Cobalt II  Halides

Download or read book The Synthesis Characterization and Electronic Properties of Some Alkylaminofluorophosphine Complexes of Cobalt II Halides written by Thomas Edward Nowlin and published by . This book was released on 1971 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Mediated Template Synthesis Of Ligands

Download or read book Metal Mediated Template Synthesis Of Ligands written by Costisor Otilia and published by World Scientific. This book was released on 2004-04-27 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role of the metal ions and the specific properties of the formed complexes.Metal Mediated Template Synthesis of Ligands offers a comprehensive analysis with wide-ranging references and provides an extensive overview of research on metal-directed organic ligands over the past five decades.

Book Cobalt

    Book Details:
  • Author : Khan Maaz
  • Publisher : BoD – Books on Demand
  • Release : 2017-12-06
  • ISBN : 9535136674
  • Pages : 168 pages

Download or read book Cobalt written by Khan Maaz and published by BoD – Books on Demand. This book was released on 2017-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cobalt is a brittle, hard, silver-grey transition metal with high melting point, hard-wearing at elevated temperatures, good corrosion resistance and improved chemical, magnetic and mechanical properties. This book aims to provide in-depth study and analyses of various synthesis and processing techniques and characterization of cobalt that can lead to its increased applications in recent technology. This book presents deep understanding of the new techniques from basic to the advance level for scientists and engineers. The chapters cover all major aspects about cobalt and its application in material characterization with special emphasis on both theoretical and experimental aspects. This book addresses engineering professionals, students and materials scientists.

Book Variations on Cobalt Hexaamine  CoN6

Download or read book Variations on Cobalt Hexaamine CoN6 written by Chang Jin Qin and published by . This book was released on 1997 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Clathrochelates

    Book Details:
  • Author : Y.Z. Voloshin
  • Publisher : Elsevier
  • Release : 2002-09-19
  • ISBN : 0080529178
  • Pages : 433 pages

Download or read book Clathrochelates written by Y.Z. Voloshin and published by Elsevier. This book was released on 2002-09-19 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clathrochelates are compounds which contain a metal ion encapsulated within a three dimensional cage of macrobicyclic ligand atoms. Within this cage the metal has unique properties and is to a great extent isolated from environmental factors. Such complexes are suitable as models of the most essential biological systems, membrane transport, electron carriers, highly selective and sensitive analytical reagents, catalysts for photochemical and redox processes, cation and anion receptors, etc. The aim of this monograph is to generalize and analyze experimental and theoretical data on clathrochelates in order to promote further research in this promising field of chemistry.Chapter 1 gives general concepts of complexes with encapsulated metal ions, discusses basic specific features of these compounds, considers and characterizes the main types of compounds with encapsulated metal ions and the main classes of clathrochelates, and includes the current nomenclature. Chapter 2 deals with the pathways of clathrochelate synthesis and the general procedures for the synthesis of macrobicyclic tris-dioximates, phosphorus-containing tris-diiminates, sepulchrates, sarcophagi-nates, and polyene and other types of clathrochelate complexes. Chapter 3 concerns studies of the electronic and spatial structure of clathrochelate complexes. In Chapter 4, the kinetics and mechanism of synthesis and decomposition reactions of macrobicyclic tris-dioximates, sarcophaginates, and sepulchrates in solution and gas phases are discussed. Chapter 5 considers the electrochemical, photochemical, and some other characteristics of clathrochelates and their applications associated with these characteristics. Finally, the practical applications of the unique properties of clathrochelates and perspectives on the synthesis of new clathrochelates are described in Chapters 6 and 7, respectively.

Book Synthesis and characterization of magnetic nanolaminated carbides

Download or read book Synthesis and characterization of magnetic nanolaminated carbides written by Andrejs Petruhins and published by Linköping University Electronic Press. This book was released on 2018-03-15 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: MAX phases are a group of nanolaminated ternary carbides and nitrides, with a composition expressed by the general formula Mn+1AXn (?? = 1 ? 3), where M is a transition metal, A is an A-group element, and X is carbon and/or nitrogen. MAX phases have attracted interest due to their unique combination of metallic and ceramic properties, related to their inherently laminated structure of a transition metal carbide (Mn+1Xn) layer interleaved by an A-group metal layer. This Thesis explores synthesis and characterization of magnetic MAX phases, where the A-group element is gallium (Ga). Due to the low melting point of Ga (T = 30 °C), conventional thin film synthesis methods become challenging, as the material is in liquid form at typical process temperatures. Development of existing methods has therefore been investigated, for reliable/reproducible synthesis routes, including sputtering from a liquid target, and resulting high quality material. Routes for minimizing trial-and-error procedures during optimization of thin film synthesis have also been studied, allowing faster identification of optimal deposition conditions and a simplified transfer of essential deposition parameters between different deposition systems. A large part of this Thesis is devoted towards synthesis of MAX phase thin films in the Cr-Mn-Ga-C system. First, through process development, thin films of Cr2GaC were deposited by magnetron sputtering. The films were epitaxial, however with small amount of impurity phase Cr3Ga, as confirmed by X-ray diffraction (XRD) measurements. The film structure was confirmed by scanning transmission electron microscopy (STEM) and the composition by energy dispersive X-ray spectroscopy (EDX) inside the TEM. Inspired by predictive ab initio calculations, the new MAX phase Mn2GaC was successfully synthesized in thin film form by magnetron sputtering. Structural parameters and magnetic properties were analysed. The material was found to have two magnetic transitions in the temperature range 3 K to 750 K, with a first order transition at around 214 K, going from non-collinear antiferromagnetic state at lower temperature to an antiferromagnetic state at higher temperature. The Neél temperature was determined to be 507 K, changing from an antiferromagnetic to a paramagnetic state. Above 800 K, Mn2GaC decomposes. Furthermore, magnetostrictive, magnetoresistive and magnetocaloric properties of the material were iv determined, among which a drastic change in lattice parameters upon the first magnetic transition was observed. This may be of interest for magnetocaloric applications. Synthesis of both Cr2GaC and Mn2GaC in thin film form opens the possibility to tune the magnetic properties through a solid solution on the transition metal site, by alloying the aforementioned Cr2GaC with Mn, realizing (Cr1-xMnx)2GaC. From a compound target with a Cr:Mn ratio of 1:1, thin films of (Cr0.5Mn0.5)2GaC were synthesized, confirmed by TEM-EDX. Optimized structure was obtained by deposition on MgO substrates at a deposition temperature of 600 ºC. The thin films were phase pure and of high structural quality, allowing magnetic measurements. Using vibrating sample magnetometry (VSM), it was found that (Cr0.5Mn0.5)2GaC has a ferromagnetic component in the temperature range from 30 K to 300 K, with the measured magnetic moment at high field decreasing by increasing temperature. The remanent moment and coercive field is small, 0.036 ?B, and 12 mT at 30 K, respectively. Using ferromagnetic resonance spectroscopy, it was also found that the material has pure spin magnetism, as indicated by the determined spectroscopic splitting factor g = 2.00 and a negligible magnetocrystalline anisotropy energy. Fuelled by the recent discoveries of in-plane chemically ordered quaternary MAX phases, so called i-MAX phases, and guided by ab initio calculations, new members within this family, based on Cr and Mn, were synthesized by pressureless sintering methods, realizing (Cr2/3Sc1/3)2GaC and (Mn2/3Sc1/3)2GaC. Their structural properties were determined. Through these phases, the Mn content is the highest obtained in a bulk MAX phase to date. This work has further developed synthesis processes for sputtering from liquid material, for an optimized route to achieve thin films of controlled composition and a high structural quality. Furthermore, through this work, Mn has been added as a new element in the family of MAX phase elements. It has also been shown, that alloying with different content of Mn gives rise to varying magnetic properties in MAX phases. As a result of this Thesis, it is expected that the MAX phase family can be further expanded, with more members of new compositions and new properties.