EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book Engineering Defects  Dopants  and Layering in 2D Transition Metal Dichalcogenides

Download or read book Engineering Defects Dopants and Layering in 2D Transition Metal Dichalcogenides written by Riccardo Torsi and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional transition metal dichalcogenides (2D TMDs) have remained at the forefront of materials science research ever since their initial discovery over 15 years ago. Similar to graphene, 2D TMDs can be thinned down to atomic thicknesses while maintaining a clean surface free of dangling bonds. A crucial distinction from graphene is that 2D TMDs are semiconductors with band gaps that vary depending on their thickness. In addition, 2D TMDs offer other coveted characteristics, including short channel effect immunity, robust excitonic effects, and strong spin orbit coupling, making them promising for diverse applications such as ultra-scaled electronics, photonics, spintronics, flexible electronics, and biosensors. Despite extensive research and successful laboratory demonstrations showcasing the potential of 2D TMDs, the absence of commercial TMD-based products indicates that these materials are still in a developmental phase, with key challenges that need to be addressed. Since the initial mechanical exfoliation experiments used to isolate thin TMD flakes, a considerable amount of research effort has gone into realizing industrially-adaptive, scalable synthesis methods for large-area TMD films. Vapor-phase synthesis methods have made impressive progress in improving the grain size and orientation of 2D TMD films at the wafer scale. However, the absence of scalable methods for controlling defect density impedes the use of TMDs in various applications. The two-dimensional nature of TMDs make their properties particularly susceptible to crystalline defects, therefore it is crucial to understand how they are formed during synthesis and ultimately develop methods for controlling their density over large areas. Another bottleneck to 2D TMD manufacturing is the realization of doping strategies that are precise, uniform, and stable over time. Lastly, the majority of the large scale synthesis efforts focus on monolayer samples, overlooking the importance of developing growth methods for few-layer TMD films with uniform layer number control. This dissertation demonstrates approaches to control defects, dopants, and layering in the synthesis of 2D TMDs. The thesis first discusses the engineering of chalcogen vacancies in MoS2 films synthesized through metal organic chemical vapor deposition (MOCVD), achieved via post-growth annealing in controlled environments, and its effects on photophysics. Then, it delves into essential considerations about how modifications to the surface of sapphire substrates during the growth process impact the optical and electronic properties of MoS2 epilayers. Having established the synthesis of high-quality MoS2 films and native defect control, the thesis will shift to n-type doping by controlled atomic substitution of Rhenium (Re) down to ppm levels. Introducing Re dopants during the growth process is revealed to suppress chalcogen vacancy formation, leading to MoS2 films with enhanced crystallinity and transport properties. The breakthroughs discussed in this work pave the way for further exploration of dopant-defect interactions in substitutionally doped 2D semiconductors, and how they can be leveraged to improve material quality and the performance of (opto-)electronic devices. Addressing thickness control, the thesis presents a novel interrupted MOCVD growth approach for layer-by-layer epitaxy of MoS2 films with uniform layer number over large areas. Building upon the key findings presented in the thesis, the final chapter presents potential future research avenues like magnetic doping in 2D semiconductors and the deterministic growth and doping of heterodimensional TMDs.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Two Dimensional Electronics and Optoelectronics

Download or read book Two Dimensional Electronics and Optoelectronics written by Yoke Khin Yap and published by MDPI. This book was released on 2018-04-03 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Two-Dimensional Electronics and Optoelectronics" that was published in Electronics

Book Synthesis and Integration of 2D Materials and ALD Dielectrics

Download or read book Synthesis and Integration of 2D Materials and ALD Dielectrics written by Cindy Chen and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are considered as promising materials for augmenting conventional Si-based technology due to their atomically layered structure and tunable electronic and optical properties. Although promising for the continued scaling of transistors, 2D materials can also present several challenges that prevent the realization of their theoretical performance. First, 2D material synthesis is still not fully mature for industrial manufacturing, requiring extensive research and development to optimize towards wafer-scale, single-crystalline, and phase-pure synthesis of 2D materials. Second, 2D materials are highly susceptible to ambient instability, as the presence of surface defects can more profoundly impact the 2D material's intrinsic electronic properties compared to that of bulk materials. Finally, integrating a suitable dielectric environment is crucial for enhancing the carrier transport properties of 2D semiconductors. The lack of out-of-plane bonding in 2D van der Waals (vdW) surfaces poses challenges for gate dielectric integration, as the chemical inertness leads to lower growth rates and non-uniform growth of dielectric layers on 2D materials. To improve 2D device performance, it is critical to address these challenges and develop 2D material synthesis and dielectric integration processes, with specific considerations of temperature requirement, scalability, reliability, and impact of dielectric environment on 2D electronic properties. In this work, we present the large-area, phase-selective growth of ambient-stable MoTe2 using hybrid physical chemical vapor deposition (HPCVD) and highlight the driving process parameters for phase control. We demonstrate a novel, multi-step growth method for the layer-by-layer growth of 2H-MoTe2, which enabled us to probe their layer-dependent optical properties. To improve the ambient stability of MoTe2, we employ ALD for BN encapsulation and demonstrate improved BN/MoTe¬2 oxidative stability up to 1 month in ambient conditions. We investigate both plasma-enhanced and thermal ALD routes for synthesizing BN and evaluating their impact on BN coverage on 2D material surfaces. It was observed that PEALD, which utilizes high-energy N2/H2 plasma, results in polycrystalline hBN, whereas thermal ALD with NH3 as the N precursor results in fully amorphous BN. We further demonstrate the wafer-scale, low-temperature (

Book Synthesis and Characterization of Binary Materials Composed of Transition Metals Coordinated to the Organic Acceptor TCNQ

Download or read book Synthesis and Characterization of Binary Materials Composed of Transition Metals Coordinated to the Organic Acceptor TCNQ written by Shannon Ann O'Kane and published by . This book was released on 1999 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: