EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis and Characterisation of Platinum based Electrocatalysts and Electrocatalytic Activity Towards Methanol Electro oxidation

Download or read book Synthesis and Characterisation of Platinum based Electrocatalysts and Electrocatalytic Activity Towards Methanol Electro oxidation written by and published by . This book was released on with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methanol electrochemical oxidation reaction (MOR) catalysts are receiving great interest especially for the application in direct methanol fuel cells (DMFCs). Much interest in DMFCs development is focused on portable power applications, because DMFCs can be better miniaturised than other fuel cells. [partial abstract].

Book Synthesis and Characterization of Platinum based Multi component Catalysts for Direct Methanol Fuel Cells

Download or read book Synthesis and Characterization of Platinum based Multi component Catalysts for Direct Methanol Fuel Cells written by Li Ren and published by . This book was released on 2007 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the thesis work, Pt-based binary, ternary, quaternary alloy anode catalysts supported on sonochemically treated multi-walled carbon nanotubes (CNTs) were synthesized with ethylene glycol reduction of corresponding metal chloride salts. Inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used for catalyst characterization. Cyclic voltammetry for methanol oxidation and CO stripping were used to evaluate the performance of the catalysts. PtRu nanoparticles supported on CNTs (PtRu/CNT) were prepared under a series of pHs. It was found that the PtRu particle size, composition, and catalytic activity were all sensitive to the deposition pHs. CO stripping results provided the peak potential and active surface area for each catalyst. The atomic ratios tended to approach the predetermined ratio 1:1 with the increase of pH, which is favored by bi-functional catalytic mechanism. PtRu catalysts prepared at higher pHs presented better electrochemical activity toward methanol oxidation. Humidified oxygen treatment of the PtRu/CNT led to improved activity of the catalysts toward methanol electro-oxidation, implying that Ru hydroxide is better than Ru as a co-catalyst. PtRu, PtOs, PtRuOs, and PtRuOsIr nanoparticles supported on CNTs with atomic ratios of Pt:Ru (tr:46), Pt:Os (80:20), Pt:Ru:Os (54:36:10), and Pt:Ru:Os:Ir (44:36:10:5) were prepared. Cyclic voltammetry for the methanol oxidation and CO stripping at the catalysts showed that PtRu/CNT and PtRuOsIr/CNT have the best performance toward methanol oxidation, PtRuOs/CNT has the lowest activity, but PtOs/CNT exhibits better catalytic activity only at potential or 0.73 V"--Abstract, leaf iii.

Book Platinum Monolayer Electrocatalysts

Download or read book Platinum Monolayer Electrocatalysts written by Radoslav Adzic and published by Springer Nature. This book was released on 2020-08-11 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.

Book Synthesis  Characterization  and Design of Novel Fuel Cell Electro oxidation Catalysts

Download or read book Synthesis Characterization and Design of Novel Fuel Cell Electro oxidation Catalysts written by Aurora Marie Cabrera Fojas and published by . This book was released on 2004 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrocatalysis in Fuel Cells

Download or read book Electrocatalysis in Fuel Cells written by Minhua Shao and published by MDPI. This book was released on 2018-09-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Electrocatalysis in Fuel Cells" that was published in Catalysts

Book Direct Methanol Fuel Cells

Download or read book Direct Methanol Fuel Cells written by Antonio Salvatore Aricò and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.

Book Electrochemical Studies and In Situ Electrochemical Nuclear Magnetic Resonance Investigations on Platinum based Bimetallic Electrocatalysts for Direct Methanol Fuel Cells

Download or read book Electrochemical Studies and In Situ Electrochemical Nuclear Magnetic Resonance Investigations on Platinum based Bimetallic Electrocatalysts for Direct Methanol Fuel Cells written by Bingchen Du and published by . This book was released on 2009 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two parallel objectives of this thesis research are 1) to investigate the electrocatalytic activities of Pt-based bimetallic nanoparticles (NPs) towards methanol (MeOH) electro-oxidation reaction (MOR), carbon monoxide (CO) tolerance and oxygen reduction reaction (ORR); and 2) to use electrochemical nuclear magnetic resonance (EC-NMR) techniques to investigate the electronic properties of the Pt-based bimetallic electrocatalysts.

Book Advanced Electrocatalysts for Low Temperature Fuel Cells

Download or read book Advanced Electrocatalysts for Low Temperature Fuel Cells written by Francisco Javier Rodríguez-Varela and published by Springer. This book was released on 2018-10-09 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.

Book PEM Fuel Cell Electrocatalysts and Catalyst Layers

Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.

Book Investigation of Synthesis Methods for Improved Platinum Ruthenium Nanoparticles Supported on Multi Walled Carbon Nanotube Electrocatalysts for Direct Methanol Fuel Cells

Download or read book Investigation of Synthesis Methods for Improved Platinum Ruthenium Nanoparticles Supported on Multi Walled Carbon Nanotube Electrocatalysts for Direct Methanol Fuel Cells written by Lindiwe Eudora Khotseng and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book chapter reports on various catalyst synthesis methods (impregnation, polyol, modified polyol, and microwave-assisted modified polyol methods) to determine which method would result in the most electrochemically active platinum-ruthenium (PtRu) electrocatalyst supported on multi-walled carbon nanotubes (MWCNTs) for methanol oxidation reaction in an acidic medium. Different techniques were used to characterize the synthesized catalysts, including the high-resolution transmission electron microscope used for morphology and calculating particle sizes, and X-ray diffraction for determining crystalline sizes. The electroactive catalyst surface area, ECSA of the electrocatalysts was determined using cyclic voltammetry (CV), while the electroactivity, electron kinetics, and stability of the electrocatalysts towards methanol oxidation were evaluated using CV, electrochemical impedance spectroscopy, and chronoamperometry, respectively. The microwave-assisted modified polyol method produced the PtRu/MWCNT electrocatalyst with the most enhanced electrocatalytic activity compared to other PtRu/MWCNT catalysts produced by the impregnation, polyol, and modified polyol methods.

Book Electrochemical Synthesis and Characterisation of Multimetallic Nanostructured Electrocatalysts

Download or read book Electrochemical Synthesis and Characterisation of Multimetallic Nanostructured Electrocatalysts written by Tumaini S. P. Mkwizu and published by . This book was released on 2015 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis concerns investigations on novel multistage electrochemical deposition of nanostructured systems composed of noble metals platinum, ruthenium, and gold. Various electrochemical synthetic pathways were systematically explored producing multilayered nanoscale electrode systems composed of Pt, Ru, or Au on glassy carbon or crystalline gold used as substrates. Electrochemical pathways involved sequential surface-limited redox-replacement (SLRR) reactions of underpotentially-deposited or overpotentially-deposited copper, potentiostatic dealloying, direct spontaneous deposition of noble metals (without intermediary steps involving redox-replacement templating reactions) as well as sequential codeposition of noble metals (with or without SLRR templating reactions). Fundamental studies were conducted using thermodynamic and kinetic models, in situ electrochemical techniques and ex situ microscopic, spectroscopic, or spectrophotometric techniques employed for probing factors controlling electrode dynamics, electrocatalysis, morphology, bulk and surface compositional properties of the noble metal-based electrode systems. Unique multilayered multimetallic nanoclusters synthesized (with binary active sites of Pt with Ru or Au) exhibited superior electrocatalytic activity towards methanol or formic acid oxidation reactions when benchmarked to equivalent monometallic multilayered Pt. Hydrodynamic electrokinetic studies of the oxygen reduction reaction (ORR) on the multilayered monometallic Pt and bimetallic Rucontaining nanoclusters revealed that the monometallic nanoclusters exhibited direct four-electron ORR whereas electrocatalysis on the bimetallic ones could be tuned to proceed via a two-electron reaction pathway. Electrocatalytic bifunctional reaction mechanisms were especially enhanced by the nanostructured systems investigated. Characterisation of multilayered nanoclusters surface and near-surface metal contents revealed interactions between metal centers, car.

Book Electrocatalysis for Membrane Fuel Cells

Download or read book Electrocatalysis for Membrane Fuel Cells written by Nicolas Alonso-Vante and published by John Wiley & Sons. This book was released on 2023-09-06 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrocatalysis for Membrane Fuel Cells Comprehensive resource covering hydrogen oxidation reaction, oxygen reduction reaction, classes of electrocatalytic materials, and characterization methods Electrocatalysis for Membrane Fuel Cells focuses on all aspects of electrocatalysis for energy applications, covering perspectives as well as the low-temperature fuel systems principles, with main emphasis on hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). Following an introduction to basic principles of electrochemistry for electrocatalysis with attention to the methods to obtain the parameters crucial to characterize these systems, Electrocatalysis for Membrane Fuel Cells covers sample topics such as: Electrocatalytic materials and electrode configurations, including precious versus non-precious metal centers, stability and the role of supports for catalytic nano-objects; Fundamentals on characterization techniques of materials and the various classes of electrocatalytic materials; Theoretical explanations of materials and systems using both Density Functional Theory (DFT) and molecular modelling; Principles and methods in the analysis of fuel cells systems, fuel cells integration and subsystem design. Electrocatalysis for Membrane Fuel Cells quickly and efficiently introduces the field of electrochemistry, along with synthesis and testing in prototypes of materials, to researchers and professionals interested in renewable energy and electrocatalysis for chemical energy conversion.

Book Fuel Cell Catalysis

    Book Details:
  • Author : Andrzej Wieckowski
  • Publisher : John Wiley & Sons
  • Release : 2009-04-01
  • ISBN : 0470463740
  • Pages : 722 pages

Download or read book Fuel Cell Catalysis written by Andrzej Wieckowski and published by John Wiley & Sons. This book was released on 2009-04-01 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wiley Series on Electrocatalysis and Electrochemistry Fuel Cell Catalysis A Surface Science Approach A Core reference on fuel cell catalysis Fuel cells represent an important alternative energy source and a very active area of research. Fuel Cell Catalysis brings together world leaders in this field, providing a unique combination of state-of-the-art theory and computational and experimental methods. With an emphasis on understanding fuel cell catalysis at the molecular level, this text covers fundamental principles, future challenges, and important current research themes. Fuel Cell Catalysis: Provides a molecular-level description of catalysis for low-temperature polymer-electrolyte membrane fuel cells, including both hydrogen-oxygen cells and direct alcohol cells Examines catalysis issues of both anode and cathode such as oxygen reduction, alcohol oxidation, and CO tolerance Features a timely and forward-looking approach through emphasis on novel aspects such as computation and bio-inspiration Reviews the use and potential of surface-sensitive techniques like vibrational spectroscopy (IR, Raman, nonlinear spectroscopy, laser), scanning tunneling microscopy, X-ray scattering, NMR, electrochemical techniques, and more Reviews the use and potential of such modern computational techniques as DFT, ab initio MD, kinetic Monte Carlo simulations, and more Surveys important trends in reactivity and structure sensitivity, nanoparticles, "dynamic" catalysis, electrocatalysis vs. gas-phase catalysis, new experimental techniques, and nontraditional catalysts This cutting-edge collection offers a core reference for electrochemists, electrocatalysis researchers, surface and physical chemists, chemical and automotive engineers, and researchers in academia, research institutes, and industry.

Book Nanomaterials for Direct Alcohol Fuel Cells

Download or read book Nanomaterials for Direct Alcohol Fuel Cells written by Fatih Sen and published by Elsevier. This book was released on 2021-08-25 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. Shows how nanomaterials are being used for the design and manufacture of DAFCs Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale

Book Electrocatalysis of Direct Methanol Fuel Cells

Download or read book Electrocatalysis of Direct Methanol Fuel Cells written by Jiujun Zhang and published by John Wiley & Sons. This book was released on 2009-10-26 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to focus on a comprehensive description on DMFC electrocatalysis draws a clear picture of the current status of DMFC technology, especially the advances, challenges and perspectives in the field. Leading researchers from universities, government laboratories and fuel cell industries in North America, Europe and Asia share their knowledge and information on recent advances in the fundamental theories, experimental methodologies and research achievements. In order to help readers better understand the science and technology of the subject, some important and representative figures, tables, photos, and comprehensive lists of reference papers are also included, such that all the information needed on this topic may be easily located. An indispensable source for physical, catalytic, electro- and solid state chemists, as well as materials scientists and chemists in industry.

Book Combinatorial and High Throughput Discovery and Optimization of Catalysts and Materials

Download or read book Combinatorial and High Throughput Discovery and Optimization of Catalysts and Materials written by Radislav A. Potyrailo and published by CRC Press. This book was released on 2006-07-19 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of parallel synthesis and high-throughput characterization tools offer scientists a time-efficient and cost-effective solution for accelerating traditional synthesis processes and developing the structure-property relationships of multiple materials under variable conditions. Written by renowned contributors to the field, Combina