EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Symplectic Techniques in Physics

Download or read book Symplectic Techniques in Physics written by Victor Guillemin and published by Cambridge University Press. This book was released on 1990-05-25 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but at the same time apply the apparatus to a great number of concrete problems. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance.

Book Symplectic Methods in Harmonic Analysis and in Mathematical Physics

Download or read book Symplectic Methods in Harmonic Analysis and in Mathematical Physics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2011-07-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.

Book Symplectic Geometry and Quantum Mechanics

Download or read book Symplectic Geometry and Quantum Mechanics written by Maurice A. de Gosson and published by Springer Science & Business Media. This book was released on 2006-08-06 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.

Book An Introduction to Symplectic Geometry

Download or read book An Introduction to Symplectic Geometry written by Rolf Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.

Book Virtual Fundamental Cycles in Symplectic Topology

Download or read book Virtual Fundamental Cycles in Symplectic Topology written by John W. Morgan and published by American Mathematical Soc.. This book was released on 2019-04-12 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of using the moduli space of pseudo-holomorphic curves on a symplectic manifold was introduced by Mikhail Gromov in 1985. From the appearance of Gromov's original paper until today this approach has been the most important tool in global symplectic geometry. To produce numerical invariants of these manifolds using this method requires constructing a fundamental cycle associated with moduli spaces. This volume brings together three approaches to constructing the “virtual” fundamental cycle for the moduli space of pseudo-holomorphic curves. All approaches are based on the idea of local Kuranishi charts for the moduli space. Workers in the field will get a comprehensive understanding of the details of these constructions and the assumptions under which they can be made. These techniques and results will be essential in further applications of this approach to producing invariants of symplectic manifolds.

Book Mathematical Methods of Classical Mechanics

Download or read book Mathematical Methods of Classical Mechanics written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Book Symplectic Fibrations and Multiplicity Diagrams

Download or read book Symplectic Fibrations and Multiplicity Diagrams written by Victor Guillemin and published by Cambridge University Press. This book was released on 1996-09-28 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of the techniques of symplectic geometry to describe 'symmetry breaking' in quantum physics.

Book Symplectic  Poisson  and Noncommutative Geometry

Download or read book Symplectic Poisson and Noncommutative Geometry written by Tohru Eguchi and published by Cambridge University Press. This book was released on 2014-08-25 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute.

Book Symmetry in Mechanics

    Book Details:
  • Author : Stephanie Frank Singer
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461201896
  • Pages : 201 pages

Download or read book Symmetry in Mechanics written by Stephanie Frank Singer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: "And what is the use," thought Alice, "of a book without pictures or conversations in it?" -Lewis Carroll This book is written for modem undergraduate students - not the ideal stu dents that mathematics professors wish for (and who occasionally grace our campuses), but the students like many the author has taught: talented but ap preciating review and reinforcement of past course work; willing to work hard, but demanding context and motivation for the mathematics they are learning. To suit this audience, the author eschews density of topics and efficiency of presentation in favor of a gentler tone, a coherent story, digressions on mathe maticians, physicists and their notations, simple examples worked out in detail, and reinforcement of the basics. Dense and efficient texts play a crucial role in the education of budding (and budded) mathematicians and physicists. This book does not presume to improve on the classics in that genre. Rather, it aims to provide those classics with a large new generation of appreciative readers. This text introduces some basic constructs of modern symplectic geometry in the context of an old celestial mechanics problem, the two-body problem. We present the derivation of Kepler's laws of planetary motion from Newton's laws of gravitation, first in the style of an undergraduate physics course, and x Preface then again in the language of symplectic geometry. No previous exposure to symplectic geometry is required: we introduce and illustrate all necessary con structs.

Book Lectures on Symplectic Geometry

Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Book Contact and Symplectic Topology

Download or read book Contact and Symplectic Topology written by Frédéric Bourgeois and published by Springer Science & Business Media. This book was released on 2014-03-10 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

Book Group Theoretical Methods in Physics

Download or read book Group Theoretical Methods in Physics written by Robert Shar and published by Elsevier. This book was released on 2012-12-02 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group Theoretical Methods in Physics: Proceedings of the Fifth International Colloquium provides information pertinent to the fundamental aspects of group theoretical methods in physics. This book provides a variety of topics, including nuclear collective motion, complex Riemannian geometry, quantum mechanics, and relativistic symmetry. Organized into six parts encompassing 64 chapters, this book begins with an overview of the theories of nuclear quadrupole dynamics. This text then examines the conventional approach in the determination of superstructures. Other chapters consider the Hamiltonian formalism and how it is applied to the KdV equation and to a slight variant of the KdV equation. This book discusses as well the significant differential equations of mathematical physics that are integrable Hamiltonian systems, including the equations governing self-induced transparency and the motion of particles under an inverse square potential. The final chapter deals with the decomposition of the tensor product of two irreducible representations of the symmetric group into a direct sum of irreducible representations. This book is a valuable resource for physicists.

Book Geometrical Methods of Mathematical Physics

Download or read book Geometrical Methods of Mathematical Physics written by Bernard F. Schutz and published by Cambridge University Press. This book was released on 1980-01-28 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Book The Breadth of Symplectic and Poisson Geometry

Download or read book The Breadth of Symplectic and Poisson Geometry written by Jerrold E. Marsden and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: * The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Book Methods Of Differential Geometry In Classical Field Theories  K symplectic And K cosymplectic Approaches

Download or read book Methods Of Differential Geometry In Classical Field Theories K symplectic And K cosymplectic Approaches written by Manuel De Leon and published by World Scientific. This book was released on 2015-08-28 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to review two of the most relevant approaches to the study of classical field theories of the first order, say k-symplectic and k-cosymplectic geometry. This approach is also compared with others like multisymplectic formalism.It will be very useful for researchers working in classical field theories and graduate students interested in developing a scientific career in the subject.

Book A Course in Modern Mathematical Physics

Download or read book A Course in Modern Mathematical Physics written by Peter Szekeres and published by Cambridge University Press. This book was released on 2004-12-16 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.

Book Differential Geometry and Mathematical Physics

Download or read book Differential Geometry and Mathematical Physics written by Gerd Rudolph and published by Springer Science & Business Media. This book was released on 2012-11-09 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.