EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

Download or read book Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The 'roughness' of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

Book Surface Roughness of Natural Rock Fractures

Download or read book Surface Roughness of Natural Rock Fractures written by Donald Timothy Slottke and published by . This book was released on 2010 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Where open, connected fractures are present, they dominate both fluid flow and transport of solutes, but the prediction of hydraulic and transport properties a priori has proven exceedingly difficult. A major challenge in predicting solute transport in fractured media is describing the physical characteristics of a representative surface that is appropriate to modeling. Fracture aperture, roughness, and channeling characteristics are important to predict flow and transport in hard rock terrains. In areas with little soil cover, fracture mapping can indicate areas or directions of greater permeability but not the magnitudes. Both cover and complex geology can limit mapping. Hand samples are generally available and upscaling from their properties would be highly beneficial. Assessing the impact of roughness on field-scale fluid flow through fractured media from samples of natural fractures on the order of 100cm2 assumes a relationship between fracture morphology and discharge is either scale invariant or smoothly transformable. It has been suggested that the length scale that surface roughness significantly contributes to the discharge falls within the size of a typical hand sample, but few data exist to support extension of small-scale relationships to larger scales. I analyze the results of flow tests on a single fracture through a 60 x 30cm block of rhyolitic tuff. The results are compared with relationships of smaller samples in a similar tuffs and granites. The data are processed to yield regularly gridded surface elevations. Describing roughness as a ratio of surface area to footprint, variances of the roughnesses of surface covering equivalently sized square samples are plotted against sample size to determine if a representative surface exists. For specimens of fractures measuring up to 25 x 29cm, a 3.2 x 3.2cm sample of granite with an iron oxide/clay fracture skin yields a reasonable expression of the roughness of the entire surface. The number of data points included in a sample of this size transcends skin type, composition and grain/crystal size. The results suggest that the unmodified cubic law is valid for the range of gradients expected in the field using the geometric mean of areal aperture data to estimate hydraulic aperture. The data also indicate that fracture aperture is not well predicted by single aperture measurements or even by averaging along a particular scan line; three-dimensional laboratory analysis and/or field testing are required. There may be a suitable scale of data for upscaling fracture roughness on the order of 10cm2. However, due to mismatch between top and bottom surfaces inherent in natural fractures, aperture samples are not consistent across the specimen and cannot be scaled. Upscaling of other factors, such as flow channeling, remain to be tested.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Characterization  Modeling  Monitoring  and Remediation of Fractured Rock

Download or read book Characterization Modeling Monitoring and Remediation of Fractured Rock written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2021-01-29 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Book Mechanics of Jointed and Faulted Rock

Download or read book Mechanics of Jointed and Faulted Rock written by Hans Peter Rossmanith and published by CRC Press. This book was released on 2020-12-18 with total page 1848 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the implementation and application of new concepts and methods to modelling, analysis, building, performance control and repair of structures of and in jointed rock and rock masses. It provides a forum for presentation of new research results and discussion for researchers.

Book Fluid Flow in Fractured Rocks

Download or read book Fluid Flow in Fractured Rocks written by Robert W. Zimmerman and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: FLUID FLOW IN FRACTURED ROCKS "The definitive treatise on the subject for many years to come" (Prof. Ruben Juanes, MIT) Authoritative textbook that provides a comprehensive and up-to-date introduction to fluid flow in fractured rocks Fluid Flow in Fractured Rocks provides an authoritative introduction to the topic of fluid flow through single rock fractures and fractured rock masses. This book is intended for readers with interests in hydrogeology, hydrology, water resources, structural geology, reservoir engineering, underground waste disposal, or other fields that involve the flow of fluids through fractured rock masses. Classical and established models and data are presented and carefully explained, and recent computational methodologies and results are also covered. Each chapter includes numerous graphs, schematic diagrams and field photographs, an extensive reference list, and a set of problems, thus providing a comprehensive learning experience that is both mathematically rigorous and accessible. Written by two internationally recognized leaders in the field, Fluid Flow in Fractured Rocks includes information on: Nucleation and growth of fractures in rock, with a multiscale characterization of their geometric traits Effect of normal and shear stresses on the transmissivity of a rock fracture and mathematics of fluid flow through a single rock fracture Solute transport in rocks, with quantitative descriptions of advection, molecular diffusion, and dispersion Fluid Flow in Fractured Rocks is an essential resource for researchers and postgraduate students who are interested in the field of fluid flow through fractured rocks. The text is also highly suitable for professionals working in civil, environmental, and petroleum engineering.

Book Methods of Geological Engineering in Discontinuous Rocks

Download or read book Methods of Geological Engineering in Discontinuous Rocks written by Richard E. Goodman and published by . This book was released on 1976 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fractured Porous Media

    Book Details:
  • Author : Pierre M. Adler
  • Publisher : Oxford University Press, USA
  • Release : 2013
  • ISBN : 0199666512
  • Pages : 184 pages

Download or read book Fractured Porous Media written by Pierre M. Adler and published by Oxford University Press, USA. This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.

Book Fluid Transport Properties of Rock Fractures at High Pressure and Temperature  Progress Report  July 1  1976  June 30  1977

Download or read book Fluid Transport Properties of Rock Fractures at High Pressure and Temperature Progress Report July 1 1976 June 30 1977 written by and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Initial stages of a study on the fluid transport properties of rock at high pressure and temperature are reported. Emphasis is placed on the mechanical hydraulic interactions, in an attempt to clarify the process of fracture closure and its influence on fracture permeability. To determine the fluid transport properties of a fracture, the effect of surface roughness, geometry, and filling on fracture permeability was investigated. Permeability of these fractures was measured at various effective normal stresses at room temperature. The law of effective stress appears valid for fractures without filling but permeability of filled fractures is more sensitive to confining pressure than pore pressure. Permeability of smooth surfaces varied 5 to 0.5 darcys over a range of effective stresses from 0 to 3000 bars. Filled fractures were an order of magnitude more permeable.

Book Structural and Tectonic Modelling and its Application to Petroleum Geology

Download or read book Structural and Tectonic Modelling and its Application to Petroleum Geology written by R.M. Larsen and published by Elsevier. This book was released on 2013-10-22 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a unique combination of structural and tectonic modelling with applied petroleum geological problems. Focussing on the Norwegian Continental Shelf and neighbouring areas, it includes discussion covering all scales - from development of sedimentary basins, to formation of fractures and joints on a microscale - and from exploration, to the exploitation of hydrocarbons. The book's coverage of structural and tectonic modelling, petroleum geology applications, and the treatment of the Norwegian Continental Shelf should make this book an invaluable resource book for advanced students of structural and tectonic modelling, teachers, and researchers; as well as for geologists and geophysicists in the petroleum industry.

Book Mechanics of Fluid Saturated Rocks

Download or read book Mechanics of Fluid Saturated Rocks written by Yves Gueguen and published by Elsevier. This book was released on 2004-05-12 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Fluid Saturated Rocks presents a current and comprehensive report on this emerging field that bridges the areas of geology and mechanics. It is of direct interest to a wide spectrum of earth scientists and engineers who are concerned with upper-crust mechanics and fluid movements, the most important fluids being oil and water. This authoritative book is the result of a collaborative effort between scientists in academic institutions and industry. It examines important issues such as subsidence, geological fault formation, earthquake faulting, hydraulic fracturing, transport of fluids, and natural and direct applications. Mechanics of Fluid Saturated Rocks provides a unique interdisciplinary viewpoint, as well as case studies, conclusions, and recommendations for further research. Covers the physical, chemical, and mechanical analysis of porous saturated rock deformation on both large and small scales Discusses the latest developments of importance to engineers and geologists Examines natural and direct applications Includes extensive bibliographies for each chapter

Book Rock Damage and Fluid Transport  Part I

Download or read book Rock Damage and Fluid Transport Part I written by G. Dresen and published by Springer Science & Business Media. This book was released on 2008-01-24 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical properties and fluid transport in rocks are intimately linked as deformation of a solid rock matrix immediately affects the pore space and permeability. Part I of this topical volume covers mainly the nucleation and evolution of crack damage in rocks, new or modified techniques to measure rock fracture toughness and a discussion of upscaling techniques relating mechanical and fluid transport behaviour in rocks at different spatial scales.

Book Flow and Contaminant Transport in Fractured Rock

Download or read book Flow and Contaminant Transport in Fractured Rock written by Jacob Bear and published by Academic Press. This book was released on 2012-12-02 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two or three decades, fractured rock domains have received increasing attention not only in reservoir engineering and hydrology, but also in connection with geological isolation of radioactive waste. Locations in both the saturated and unsaturated zones have been under consideration because such repositories are sources of heat and potential sources of groundwater contamination. Thus, in addition to the transport of mass of fluid phases in single and multiphase flow, the issues of heat transport and mass transport of components have to be addressed.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : Committee on Fracture Characterization and Fluid Flow
  • Publisher : National Academies Press
  • Release : 1996-09-10
  • ISBN : 0309563488
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by Committee on Fracture Characterization and Fluid Flow and published by National Academies Press. This book was released on 1996-09-10 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Fluid Transport Properties of Rock Fractures at High Pressure and Temperature  Progress Report  July 1  1977  June 30  1978

Download or read book Fluid Transport Properties of Rock Fractures at High Pressure and Temperature Progress Report July 1 1977 June 30 1978 written by and published by . This book was released on 1978 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The permeability of whole and jointed Barre granite was measured at pressures up to 2 kilobars. Jointed samples were actually split cylinders joined by surfaces with controlled surface roughness. Samples with induced tension fractures were also measured. The permeability of the whole rock ranged from about 10−6 to 10−7 darcies. The permeability of the jointed rock ranged from about 8 x 10−5 darcies at low pressure down to that of the whole rock at high pressures. Permeability was not a simple function of the difference between external confining pressure (P/sub c/) and internal fluid pressure (P/sub f/). Changes in permeability were found to be proportional to (b dP/sub f/ - a dP/sub c/) where b/a is less than 1 for the jointed rock and b/a is approximately 1 for whole rock. The order of application of P/sub c/ and P/sub f/ was also important. Permeability hysteresis and an ultimate decrease in permeability in both whole and jointed rock resulted when internal fluid pressure was cycled. This effect seems to diminish with increasing confining pressure. At a particular P/sub c/, the volume flow rate, q, is proportional to (P/sub c/ - P/sub f/)/sup -n/. Increasing the surface roughness of the joints decreased the value of n, which was smallest for the tension fracture and the whole rock.

Book Pore Scale Geochemical Processes

Download or read book Pore Scale Geochemical Processes written by Carl Steefel and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-09-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This RiMG (Reviews in Mineralogy & Geochemistry) volume includes contributions that review experimental, characterization, and modeling advances in our understanding of pore-scale geochemical processes. The volume had its origins in a special theme session at the 2015 Goldschmidt Conference in Prague. From a diversity of pore-scale topics that ranged from multi-scale characterization to modeling, this work summarizes the state-of-the-science in this subject. Topics include: modification of thermodynamics and kinetics in small pores. chemo-mechanical processes and how they affect porosity evolution in geological media. small angle neutron scattering (SANS) techniques. how isotopic gradients across fluid–mineral boundaries can develop and how these provide insight into pore-scale processes. Information on an important class of models referred to as "pore network" and much more. The material in this book is accessible for graduate students, researchers, and professionals in the earth, material, environmental, hydrological, and biological sciences. The pore scale is readily recognizable to geochemists, and yet in the past it has not received a great deal of attention as a distinct scale or environment that is associated with its own set of questions and challenges. Is the pore scale merely an environment in which smaller scale (molecular) processes aggregate, or are there emergent phenomena unique to this scale? Is it simply a finer-grained version of the "continuum" scale that is addressed in larger-scale models and interpretations? The scale is important because it accounts for the pore architecture within which such diverse processes as multi-mineral reaction networks, microbial community interaction, and transport play out, giving rise to new geochemical behavior that might not be understood or predicted by considering smaller or larger scales alone.

Book Constraining Fracture Permeability by Characterizing Fracture Surface Roughness

Download or read book Constraining Fracture Permeability by Characterizing Fracture Surface Roughness written by Mishal Mansour Al-Johar and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Open and connected fractures, where present, control fluid flow and dominate solute transport. Flow through fractures has major implications for water resource management, underground waste repositories, contaminant remediation, and hydrocarbon exploitation. Complex fracture morphology makes it difficult to quantify and predict flow and transport accurately. The difficulty in usefully describing the complex morphology of a real fracture from a small 3-D volume or 2-D profile sample remains unresolved. Furthermore, even when complex fracture morphology is measured across three-dimensions, accurate prediction of discharge remains difficult. High resolution x-ray computed tomography (HXRCT) data collected for over 20 rock surfaces and fractures provide a useful dataset to study fracture morphology across scales of several orders of magnitude. Samples include fractured rock of varying lithology, including sandstone, volcanic tuffs and crystalline igneous and metamorphic rocks. Results suggest that the influence of grain size on surface roughness is not readily apparent due to other competing variables such as mechanics, skins and coatings, and weathering and erosion. Flow tests of HXRCT-scanned fractures provide real discharge data allowing the hydraulic aperture to be directly measured. Scale-invariant descriptions of surface roughness can produce constrained estimates of aperture variability and possibly yield better predictions of fluid flow through fractures. Often, a distinction is not made between the apparent and true fracture apertures for rough fractures measured on a 2-D topographic grid. I compare a variety of local aperture measurements, including the apparent aperture, two-dimensional circular tangential aperture, and three-dimensional spherical tangential aperture. The mechanical aperture, the arithmetic mean of the apparent local aperture, is always the largest aperture. The other aperture metrics vary in their ranking, but remain similar. Results suggest that it may not be necessary to differentiate between the apparent and true apertures. Rock fracture aperture is the predominant control on permeability, and surface roughness controls fracture aperture. A variety of surface roughness characterizations using statistical and fractal methods are compared. A combination of the root-mean-square roughness and the surface-to-footprint ratio are found to be the most useful descriptors of rock fracture roughness. Mated fracture surfaces are observed to have nearly identical characterizations of fracture surface roughness, suggesting that rock fractures can be sampled by using only one surface, resulting in a significantly easier sampling requirement. For mated fractures that have at least one point in contact, a maximum potential aperture can be constrained by reflecting and translating a single surface. The maximized aperture has a nearly perfect correlation with the RMS roughness of the surface. These results may allow better predictions of fracture permeability thereby providing a better understanding of subsurface fracture flow for applications to contaminant remediation and water and hydrocarbon management. Further research must address upscaling fracture morphology from hand samples to outcrops and characterizing entire fracture networks from samples of single fractures.