EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface normal Germanium Quantum Well Modulators for Free space Optical Interconnects to Silicon

Download or read book Surface normal Germanium Quantum Well Modulators for Free space Optical Interconnects to Silicon written by Ross Michael Audet and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's computer systems are constrained by the high power consumption and limited bandwidth of inter- and intra-chip electrical interconnections. Optical links could alleviate these problems, provided that the optical and electronic elements are tightly integrated. Most present optical modulators use materials systems that are incompatible with CMOS device fabrication, or rely on weak electrooptic effects that are difficult to utilize for vertical incidence devices. The extremely high communications bandwidth demands of future silicon chips may ultimately require massively parallel free-space optical links based on array integration of such vertical incidence modulators. We have investigated the suitability of surface-normal asymmetric Fabry-Perot electroabsorption modulators for short-distance optical interconnections between silicon chips. These modulators should be made as small as possible to minimize device capacitance; however, size-dependent optical properties impose constraints on the dimensions. We have thus performed simulations that demonstrate how the optical performance of the modulators depends on both the spot size of the incident beam and the dimensions of the device. We also discuss the tolerance to nonidealities such as surface roughness and beam misalignment. The particular modulators considered here are structures based upon the quantum-confined Stark effect in Ge/SiGe quantum wells. We present device designs that have predicted extinction ratios greater than 7 dB and switching energies as low as 10 fF/bit, which suggests that these CMOS-compatible devices can enable high interconnect bandwidths without the need for wavelength division multiplexing. Next, we present experimental results from these Ge/SiGe asymmetric Fabry-Perot modulators. Several approaches were investigated for forming resonant cavities using high-index-contrast Bragg mirrors around the Ge/SiGe quantum well active regions. These include fabrication on double-silicon-on-insulator reflecting substrates, a layer transfer and etch-back process using anodic bonding, and alkaline etching the backside of the Si substrate to leave suspended SiGe membranes. We present results from each of these modulator structures. The best performance is achieved from the SiGe membrane modulators, which are the first surface-normal resonant-cavity reflection modulators fabricated entirely on standard silicon substrates. Electroabsorption and electrorefraction both contribute to the reflectance modulation. The devices exhibit greater than 10 dB extinction ratio with low insertion loss of 1.3 dB. High-speed modulation with a 3 dB bandwidth of 4 GHz is demonstrated. The moderate-Q cavity (Q~600) yields an operating bandwidth of more than 1 nm and permits operation without active thermal stabilization.

Book Ge SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems

Download or read book Ge SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems written by Ren Shen and published by Stanford University. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to the development of silicon VLSI technology over the past several decades, we can now integrate far more transistors onto a single chip than ever before. However, this also imposes more stringent requirements, in terms of bandwidth, density, and power consumption, on the interconnect systems that link transistors. The interconnect system is currently one of the major hurdles for the further advancement of the electronic technology. Optical interconnect is considered a promising solution to overcome the interconnect bottleneck. The quantum-confined Stark effect in Ge/SiGe quantum well system paves the way to realize efficient optical modulation on Si in a fully CMOS compatible fashion. In this dissertation, we investigate the integration of Ge/SiGe quantum well waveguide modulators with silicon-on-insulator waveguides. For the first time, we demonstrate the selective epitaxial growth of Ge/SiGe quantum well structures on patterned Si substrates. The selective epitaxy exhibits perfect selectivity and minimal pattern sensitivity. Compared to their counterparts made using bulk epitaxy, the p-i-n diodes from selective epitaxy demonstrate very low reverse leakage current and high reverse breakdown voltage. Strong quantum-confined Stark effect (QCSE) is, for the first time, demonstrated in this material system in the telecommunication C-band at room temperature. A 3 dB optical modulation bandwidth of 2.8 THz is measured, covering more than half of the C-band. We propose, analyze, and experimentally demonstrate a novel approach to realize butt coupling between a SOI waveguide and a selectively grown Ge/SiGe quantum well waveguide modulator using a thin dielectric spacer. Through numerical simulation, we show that the insertion loss penalty for a thin 20 nm thick spacer can be as low as 0.13 dB. Such a quantum well waveguide modulator with a footprint of 8 [Mu]m2 has also been fabricated, demonstrating 3.2 dB modulation contrast with merely 1V swing at a speed of 16 Gpbs.

Book High Speed  Low Driving Voltage Vertical Cavity Germanium silicon Modulators for Optical Interconnect

Download or read book High Speed Low Driving Voltage Vertical Cavity Germanium silicon Modulators for Optical Interconnect written by Yiwen Rong and published by Stanford University. This book was released on 2010 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information processing requires interconnects to carry information from one place to another. Optical interconnects between electronics systems have attracted significant attention and development for a number of years because optical links have demonstrated potential advantages for high-speed, low-power, and interference immunity. With increasing system speed and greater bandwidth requirements, the distance over which optical communication is useful has continually decreased to chip-to-chip and on-chip levels. Monolithic integration of photonics and electronics will significantly reduce the cost of optical components and further combine the functionalities of chips on the same or different boards or systems. Modulators are one of the fundamental building blocks for optical interconnects. Previous work demonstrated modulators based upon the quantum confined Stark effect (QCSE) in SiGe p-i-n devices with strained Ge/SiGe multi-quantum-well (MQW) structures in the i region. While the previous work demonstrated the effect, it did not examine the high-speed aspects of the device, which is the focus of this dissertation. High-speed modulation and low driving voltage are the keys for the device's practical use. At lower optical intensity operation, the ultimate limitation in speed will be the RC time constant of the device itself. At high optical intensity, the large number of photo generated carriers in the MQW region will limit the performance of the device through photo carrier related voltage drop and exciton saturation. In previous work, the devices consist of MQWs configured as p-i-n diodes. The electric field induced absorption change by QCSE modulates the optical transmission of the device. The focus of this thesis is the optimization of MQW material deposition, minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The design, fabrication and high-speed characterization of devices of different sizes, with different bias voltages are presented. The device fabrication is based on processes for standard silicon electronics and is suitable for mass-production. This research will enable efficient transceivers to be monolithically integrated with silicon chips for high-speed optical interconnects. We demonstrated a modulator, with an eye diagram of 3.125GHz, a small driving voltage of 2.5V and an f3dB bandwidth greater than 30GHz. Carrier dynamics under ultra-fast laser excitation and high-speed photocurrent response are also investigated.

Book High Speed  Low Driving Voltage Vertical Cavity Germanium silicon Modulators for Optical Interconnect

Download or read book High Speed Low Driving Voltage Vertical Cavity Germanium silicon Modulators for Optical Interconnect written by Yiwen Rong and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Information processing requires interconnects to carry information from one place to another. Optical interconnects between electronics systems have attracted significant attention and development for a number of years because optical links have demonstrated potential advantages for high-speed, low-power, and interference immunity. With increasing system speed and greater bandwidth requirements, the distance over which optical communication is useful has continually decreased to chip-to-chip and on-chip levels. Monolithic integration of photonics and electronics will significantly reduce the cost of optical components and further combine the functionalities of chips on the same or different boards or systems. Modulators are one of the fundamental building blocks for optical interconnects. Previous work demonstrated modulators based upon the quantum confined Stark effect (QCSE) in SiGe p-i-n devices with strained Ge/SiGe multi-quantum-well (MQW) structures in the i region. While the previous work demonstrated the effect, it did not examine the high-speed aspects of the device, which is the focus of this dissertation. High-speed modulation and low driving voltage are the keys for the device's practical use. At lower optical intensity operation, the ultimate limitation in speed will be the RC time constant of the device itself. At high optical intensity, the large number of photo generated carriers in the MQW region will limit the performance of the device through photo carrier related voltage drop and exciton saturation. In previous work, the devices consist of MQWs configured as p-i-n diodes. The electric field induced absorption change by QCSE modulates the optical transmission of the device. The focus of this thesis is the optimization of MQW material deposition, minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The design, fabrication and high-speed characterization of devices of different sizes, with different bias voltages are presented. The device fabrication is based on processes for standard silicon electronics and is suitable for mass-production. This research will enable efficient transceivers to be monolithically integrated with silicon chips for high-speed optical interconnects. We demonstrated a modulator, with an eye diagram of 3.125GHz, a small driving voltage of 2.5V and an f3dB bandwidth greater than 30GHz. Carrier dynamics under ultra-fast laser excitation and high-speed photocurrent response are also investigated.

Book Surface normal Multiple Quantum Well Electroabsorption Modulators

Download or read book Surface normal Multiple Quantum Well Electroabsorption Modulators written by Stéphane Junique and published by . This book was released on 2007 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ge SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems

Download or read book Ge SiGe Quantum Well Waveguide Modulator for Optical Interconnect Systems written by Ren Shen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to the development of silicon VLSI technology over the past several decades, we can now integrate far more transistors onto a single chip than ever before. However, this also imposes more stringent requirements, in terms of bandwidth, density, and power consumption, on the interconnect systems that link transistors. The interconnect system is currently one of the major hurdles for the further advancement of the electronic technology. Optical interconnect is considered a promising solution to overcome the interconnect bottleneck. The quantum-confined Stark effect in Ge/SiGe quantum well system paves the way to realize efficient optical modulation on Si in a fully CMOS compatible fashion. In this dissertation, we investigate the integration of Ge/SiGe quantum well waveguide modulators with silicon-on-insulator waveguides. For the first time, we demonstrate the selective epitaxial growth of Ge/SiGe quantum well structures on patterned Si substrates. The selective epitaxy exhibits perfect selectivity and minimal pattern sensitivity. Compared to their counterparts made using bulk epitaxy, the p-i-n diodes from selective epitaxy demonstrate very low reverse leakage current and high reverse breakdown voltage. Strong quantum-confined Stark effect (QCSE) is, for the first time, demonstrated in this material system in the telecommunication C-band at room temperature. A 3 dB optical modulation bandwidth of 2.8 THz is measured, covering more than half of the C-band. We propose, analyze, and experimentally demonstrate a novel approach to realize butt coupling between a SOI waveguide and a selectively grown Ge/SiGe quantum well waveguide modulator using a thin dielectric spacer. Through numerical simulation, we show that the insertion loss penalty for a thin 20 nm thick spacer can be as low as 0.13 dB. Such a quantum well waveguide modulator with a footprint of 8 [Mu]m2 has also been fabricated, demonstrating 3.2 dB modulation contrast with merely 1V swing at a speed of 16 Gpbs.

Book Silicon Photonics

Download or read book Silicon Photonics written by Joel A. Kubby and published by SPIE-International Society for Optical Engineering. This book was released on 2006 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.

Book High Speed Germanium Silicon Modulators For Optical Interconnect

Download or read book High Speed Germanium Silicon Modulators For Optical Interconnect written by Yiwen Rong and published by LAP Lambert Academic Publishing. This book was released on 2014-11-28 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information processing requires interconnects to carry information from one place to another. Optical interconnects between electronics systems have attracted significant attention and development for a number of years because optical links have demonstrated potential advantages for high-speed, low-power, and interference immunity. With increasing system speed and greater bandwidth requirements, the distance over which optical communication is useful has continually decreased to chip-to-chip and on-chip levels. Monolithic integration of photonics and electronics will significantly reduce the cost of optical components and further combine the functionalities of chips on the same or different boards or systems. Modulators are one of the fundamental building blocks for optical interconnects.

Book Ge SiGe Electroabsorption Modulators for Si based Photonic Integrated Chips

Download or read book Ge SiGe Electroabsorption Modulators for Si based Photonic Integrated Chips written by Elizabeth Hall Edwards and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In chapter 1, we explain how optical interconnects can drastically improve data transmission performance while reducing power use. This is critical to the economic and environmental sustainability of the projected growth of data transmission needed for the rapid expansion of communication, commerce, and computation. We explain the importance of Si-CMOS process compatibility and energy requirements for optical components, and describe our solution using the quantum-confined Stark effect in Ge/SiGe quantum wells. In chapter 2, we summarize our improvements to the Ge/SiGe material system, requisite to the success of the surface-normal and microdisk modulators described in chapters 3 and 4. These devices are capable of high-speed, efficient modulation and compact form factors necessary for CMOS process integration. The advances described in this thesis help pave the way for widespread adoption of Ge/SiGe electroabsorption modulators for Si-based photonic integrated chips.

Book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards

Download or read book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards written by and published by . This book was released on 2008 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fibre Optic Communication Devices

Download or read book Fibre Optic Communication Devices written by Norbert Grote and published by Springer Science & Business Media. This book was released on 2001-01-26 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.

Book Meeting Abstracts

Download or read book Meeting Abstracts written by Electrochemical Society and published by . This book was released on 2002 with total page 1590 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Science Abstracts

Download or read book Science Abstracts written by and published by . This book was released on 1995 with total page 1360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 1948 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Photonics II

    Book Details:
  • Author : David J. Lockwood
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-13
  • ISBN : 3642105068
  • Pages : 264 pages

Download or read book Silicon Photonics II written by David J. Lockwood and published by Springer Science & Business Media. This book was released on 2010-10-13 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is volume II of a series of books on silicon photonics. It gives a fascinating picture of the state-of-the-art in silicon photonics from a component perspective. It presents a perspective on what can be expected in the near future. It is formed from a selected number of reviews authored by world leaders in the field, and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of micro- and nanophotonics and optoelectronics.

Book Index to IEEE Publications

Download or read book Index to IEEE Publications written by Institute of Electrical and Electronics Engineers and published by . This book was released on 1990 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues for 1973- cover the entire IEEE technical literature.