EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface Effects on Charge Carrier Dynamics in Semiconductor Quantum Dots

Download or read book Surface Effects on Charge Carrier Dynamics in Semiconductor Quantum Dots written by Pooja Tyagi and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Due to the large surface-to-volume ratio of quantum dots, their surface conditions play a significant role in determining their electronic and optical properties. In this thesis, we show that the presence of surface states modifies the optical selection rules in quantum dots and enhances the rate of surface charge trapping. These surface-induced effects have profound impact on the measurement of multiexciton recombination and carrier multiplication processes. Specifically, in transient absorption studies, surface states result in additional decay timescales which may be misattributed to multiexciton recombination processes. Additionally, they lead to large "apparent" carrier multiplication yields even under conditions where it is forbidden by energy conservation. The surface-dependent transient absorption studies presented in this work suggest ways to identify and minimize the undesirable surface-induced signals. Interestingly, surface-induced processes also result in significant electrostatic effects. We show that due to the piezoelectric nature of wurtzite CdSe quantum dots, the strong electric field created by surface charge trapping can drive coherent acoustic phonons in these systems. We further show that the amplitude of this piezoelectric response can be controlled by altering the surface conditions of the quantum dot. Finally, we theoretically investigate the effect of multiple surface layers on carrier localization in nanostructures. We find that in a core/barrier/shell configuration, layered nanostructures offer independent control over electron and hole wave functions. These results suggest design principles for wave function engineering in potential quantum dot applications in light emitting devices, photovoltaics and optical amplification." --

Book Effects of Surface Modification on Charge carrier Dynamics at Semiconductor Interfaces

Download or read book Effects of Surface Modification on Charge carrier Dynamics at Semiconductor Interfaces written by Agnes Juang and published by . This book was released on 2003 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the basic concepts of semiconductor junctions is an important step towards the development of efficient solar energy conversion devices. The work described in this dissertation includes both the investigation of semiconductor/liquid junctions and the modification of semiconductor surfaces for achieving chemical control over physical properties.

Book Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

Download or read book Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots written by and published by . This book was released on 1998 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

Book Colloidal Quantum Dot Optoelectronics and Photovoltaics

Download or read book Colloidal Quantum Dot Optoelectronics and Photovoltaics written by Gerasimos Konstantatos and published by Cambridge University Press. This book was released on 2013-11-07 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Book Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids

Download or read book Charge Carrier Dynamics in Lead Sulfide Quantum Dot Solids written by Rachel Hoffman Gilmore and published by . This book was released on 2017 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dots, also called semiconductor nanocrystals, are an interesting class of materials because their band gap is a function of the quantum dot size. Their optical properties are not determined solely by the atomic composition, but may be engineered. Advances in quantum dot synthesis have enabled control of the ensemble size dispersity and the creation of monodisperse quantum dot ensembles with size variations of less than one atomic layer. Quantum dots have been used in a variety of applications including solar cells, light-emitting diodes, photodetectors, and thermoelectrics. In many of these applications, understanding charge transport in quantum dot solids is crucial to optimizing efficient devices. We examine charge transport in monodisperse, coupled quantum dot solids using spectroscopic techniques explained by hopping transport models that provide a complementary picture to device measurements. In our monodisperse quantum dot solids, the site-to-site energetic disorder that comes from size dispersity and the size-dependent band gap is very small and spatial disorder in the quantum dot superlattice often has a greater impact on charge transport. In Chapter 2, we show that improved structural order from self-assembly in monodisperse quantum dots reduces the interparticle spacing and has a greater impact than reduced energetic disorder on increasing charge carrier hopping rates. In Chapter 3, we present temperature-dependent transport measurements that demonstrate again that when energetic disorder is very low, structural changes will dominate the dynamics. We find increasing mobility with decreasing temperature that can be explained by a 1-2 Å contraction in the edge-to-edge nearest neighbor quantum dot spacing. In Chapter 4, we study optical states that are 100-200 meV lower in energy than the band gap. Because we work with monodisperse quantum dots, we are able to resolve this trap state separately from the band edge state and study its optical properties. We identify the trap state as dimers that form during synthesis and ligand exchange when two bare quantum dot surfaces fuse. The findings of this thesis point to the importance of minimizing the structural disorder of the coupled quantum dot solid in addition to the energetic disorder to optimize charge carrier transport.

Book Nanocrystal Quantum Dots

Download or read book Nanocrystal Quantum Dots written by Victor I. Klimov and published by CRC Press. This book was released on 2017-12-19 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.

Book Charge Carrier Dynamics in Nontoxic Semiconductor Quantum Dots

Download or read book Charge Carrier Dynamics in Nontoxic Semiconductor Quantum Dots written by Alexander Florian Richter and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carrier Dynamics and Lasing Applications of Colloidal Quantum Dots

Download or read book Carrier Dynamics and Lasing Applications of Colloidal Quantum Dots written by Golam Bappi and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Colloidal quantum dots have seen progress over the last three decades as an active material for solution processed optoelectronics. Quantum dots offer a tunable optical bandgap from the UV to the mid-IR via control over size and chemical composition. Their optical and electronic properties can be further manipulated through surface engineering and heterostructuring. These materials are processed from solution, enabling low-cost fabrication; and are compatible with a wide range of substrates.In this thesis, I investigate properties of colloidal quantum dots for lasing applications. My findings illuminate fundamental processes that determine their performance in lasing; and point to strategies to overcome present-day limitations. First, I investigate the effects of temperatures reached during continuous-wave excitation on the charge carrier dynamics in CdSe/CdS core/shell QDs, and their effect on the lasing threshold. Modelling and experimental characterization reveal a temperature-activated sub- picosecond electron trapping process that depletes the population of excited QDs. Accordingly, a small decrease in the athermal lasing threshold can yield a large decrease in the continuous- wave lasing threshold due to reduced heat generation. In CdSe/CdS QDs, built-in biaxial strain reduces the valence band-edge degeneracy, lowering the athermal and CW lasing threshold by 30% and 70% respectively. Next I investigate graded CdSe/CdS shells on infrared InAs QDs to suppress non-radiative biexciton Auger recombination. Infrared InAs QDs are promising materials for infrared light emitting devices, but their Auger lifetime is much shorter than those found in more widely explored cadmium and lead chalcogenide materials. The graded CdSe/CdS shells on InAs which I develop herein result in a 2x increase in the Auger lifetime relative to the best value reported in prior InAs QD literature. Finally, I propose a method to achieve nanosecond deep-blue lasing using CsPbCl3 QDs. These perovskite quantum dots suffer from fast biexciton Auger lifetimes, and are consequently able to sustain lasing only under femtosecond pulsed photoexcitation. Forming a superlattice of QDs with aligned dipoles, and coupling them to a high Q-factor distributed feedback grating, is a step toward quasi-CW lasing in this materials system. I design the grating for single mode operation within the gain spectrum of the CsPbCl3 QDs.

Book Semiconductor Quantum Dots

    Book Details:
  • Author : Ladislaus Alexander Banyai
  • Publisher : World Scientific
  • Release : 1993-05-28
  • ISBN : 9814504238
  • Pages : 264 pages

Download or read book Semiconductor Quantum Dots written by Ladislaus Alexander Banyai and published by World Scientific. This book was released on 1993-05-28 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Quantum Dots presents an overview of the background and recent developments in the rapidly growing field of ultrasmall semiconductor microcrystallites, in which the carrier confinement is sufficiently strong to allow only quantized states of the electrons and holes. The main emphasis of this book is the theoretical analysis of the confinement induced modifications of the optical and electronic properties of quantum dots in comparison with extended materials. The book develops the theoretical background material for the analysis of carrier quantum-confinement effects, introduces the different confinement regimes for relative or center-of-mass motion quantization of the electron-hole-pairs, and gives an overview of the best approximation schemes for each regime. A detailed discussion of the carrier states in quantum dots is presented and surface polarization instabilities are analyzed, leading to the self-trapping of carriers near the surface of the dots. The influence of spin-orbit coupling on the quantum-confined carrier states is discussed. The linear and nonlinear optical properties of small and large quantum dots are studied in detail and the influence of the quantum-dot size distribution in many realistic samples is outlined. Phonons in quantum dots as well as the influence of external electric or magnetic fields are also discussed. Last but not least the recent developments dealing with regular systems of quantum dots are also reviewed. All things included, this is an important piece of work on semiconductor quantum dots not to be dismissed by serious researchers and physicists.

Book Carrier Dynamics in Semiconductor Quantum Dots

Download or read book Carrier Dynamics in Semiconductor Quantum Dots written by Jörg Siegert and published by . This book was released on 2006 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Quantum Dots

    Book Details:
  • Author : Yasuaki Masumoto
  • Publisher : Springer Science & Business Media
  • Release : 2002-05-28
  • ISBN : 9783540428053
  • Pages : 520 pages

Download or read book Semiconductor Quantum Dots written by Yasuaki Masumoto and published by Springer Science & Business Media. This book was released on 2002-05-28 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Growth of Self Organized Quantum Dots / J.-S. Lee / - Excitonic Structures and Optical Properties of Quantum Dots / Toshihide Takagahara / - Electron-Phonon Interactions in Semiconductor Quantum Dots / Toshihide Takagahara / - Micro-Imaging and Single Dot Spectroscopy of Self Assembled Quantum Dots / Mitsuru Sugisaki / - Persistent Spectral Hole Burning in Semiconductor Quantum Dots / Yasuaki Masumoto / - Dynamics of Carrier Relaxation in Self Assembled Quantum Dots / Ivan V. Ignatiev, Igor E. Kozin / - Resonant Two-Photon Spectroscopy of Quantum Dots / Alexander Baranov / - Homogeneous Width of Confined Excitons in Quantum Dots - Experimental / Yasuaki Masumoto / - Theory of Exciton Dephasing in Semiconductor Quantum Dots / Toshihide Takagahara / - Excitonic Optical Nonlinearity and Weakly Correlated Exciton-Pair States / Selvakumar V. Nair, Toshihide Takagahara / - Coulomb Effects in the Optical Spectra of Highly Excited Semiconductor Quantum Dots / Selvakumar V. Nair / - Device ...

Book Semiconductor Nanostructures

Download or read book Semiconductor Nanostructures written by Dieter Bimberg and published by Springer Science & Business Media. This book was released on 2008-06-03 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.

Book Discovery  Disruption  and Future Implications of Nanomaterials

Download or read book Discovery Disruption and Future Implications of Nanomaterials written by Kaur, Hardeep and published by IGI Global. This book was released on 2024-08-29 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexities of nanotechnology often hamper the discoveries of nanomaterials and their wide range of applications. Researchers face the challenge of keeping up with the rapid development of new materials and figuring out how they can be most efficiently and safely used. As scientists continue to explore the unique properties of nanoparticles, nanofibers, and other nanostructures, there is a growing need for a comprehensive resource to guide them through this intricate landscape. Discovery, Disruption, and Future Implications of Nanomaterials is a book that provides a curated collection of cutting-edge research and insights into the strategic importance of nanomaterials. It bridges the gap between theory and practice, covering fundamental principles to advanced applications in areas such as biomedicine, electronics, energy, and more. The book focuses on carbon-based materials for water treatment, gene/drug delivery, and nanotechnology's role in various fields, equipping readers with the knowledge to navigate the complexities of nanomaterial development and implementation.

Book 4D Electron Microscopy

    Book Details:
  • Author : Ahmed H. Zewail
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 1848163908
  • Pages : 359 pages

Download or read book 4D Electron Microscopy written by Ahmed H. Zewail and published by World Scientific. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.

Book Tuning Semiconducting and Metallic Quantum Dots

Download or read book Tuning Semiconducting and Metallic Quantum Dots written by Christian von Borczyskowski and published by CRC Press. This book was released on 2017-03-27 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology is one of the growing areas of this century, also opening new horizons for tuning optical properties. This book introduces basic tuning schemes, including those on a single quantum object level, with an emphasis on surface and interface manipulation of semiconducting and metallic quantum dots. There are two opposing demands in current forefront applications of quantum dots as optical labels, namely high luminescence stability (suppression of luminescence intermittency) and controllable intermittency and bleaching on a single-particle level to facilitate super-resolution optical microscopy (for which Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded the 2014 Nobel Prize in Chemistry). The book discusses these contradictory demands with respect to both an understanding of the basic processes and applications. The chapters are a combination of scholarly presentation and comprehensive review and include case studies from the authors’ research, including unpublished results. Special emphasis is on a detailed understanding of spectroscopic and dynamic properties of semiconducting quantum dots. The book is suitable for senior undergraduates and researchers in the fields of optical nanoscience, materials science, and nanotechnology.