EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Surface and Subsurface Reaction Mechanisms in Atomic Layer Deposition of Metals and Metal Oxides

Download or read book Surface and Subsurface Reaction Mechanisms in Atomic Layer Deposition of Metals and Metal Oxides written by Joel Richard Schneider and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology has shown remarkable versatility and strength in response to large-scale challenges facing society today, despite many of its technical applications being on the atomic scale. From renewable energy devices to medical and sequencing technologies, to three-dimensional transistor architectures, advanced water purification, and novel organic-inorganic hybrid materials, nanotechnology has enabled powerful advances through precisely creating materials with specific chemistries and nanostructures. Thin films are particularly robust in their applications, and atomic layer deposition (ALD) is a thin film deposition technique with demonstrated strengths in precision, tunability, and structural control. The core principles of ALD that allow it to achieve these powerful results rely on self-limiting surface chemical reactions; however, despite the prevalence of ALD reports in the literature there are still many surface mechanisms that are poorly understood. ALD material properties can be highly sensitive to process conditions, impurities introduced from surface reactions, subtle changes in reaction rates, and many more phenomena, so it is critical to fully understand the surface reaction mechanisms at play in ALD to effectively implement processes and design chemistries for new materials. Especially as ALD is often idealized to behave in a simple self-limiting manner, the presence of more complex surface reactions that deviate from this behavior necessitates deeper study. As a result, this dissertation presents work to find, characterize, and model new reaction mechanisms in ALD that cause deviations from ideal behavior, then generalize that understanding and apply it to new chemical systems. The first half of the work focuses on activating surface species in the ALD of metal oxides. ALD of iron oxide using ozone is investigated as a case study, and we find that during the process ozone generates reactive oxygen species that migrate below the surface of the growing film where they are stored. The expansion of the ALD reactions beyond the surface of the film to a reservoir of active species in the subsurface region has a host of implications on the ALD process and the resulting material. The storage of reactive species results in high growth rates, and the physical movement of species through the film causes preferential crystalline rearrangement and film roughening. Further studies of nickel oxide ALD found related behaviors, indicating it grows by a similar mechanism of subsurface active species storage. In both cases, the oxygen species are reactive enough to activate surface combustion reactions, including in ALD of other materials grown on top of the reactive reservoirs. These mechanisms are consistent with reports of some other oxides, suggesting oxygen mobility and oxidizability of the metal center may be important factors in facilitating this reservoir mechanism. The second half of this thesis focuses instead on surface passivating species in metal ALD. As ALD hinges on self-limiting reactions resulting from the surface being passivated toward further reaction, the persistence of passivation is key to consistent and precise process function. A promising precursor for ruthenium ALD, Ru(DMBD)(CO)3, is studied due to its unique passivation mechanism of L-type ligands bonded to a zero-oxidation state metal center. Some reports have hypothesized this bonding results in excellent nucleation and growth properties, while others that it results in poor deposition control with better applications in continuous-deposition processes. By studying this ALD process, we can then gain insight into both surface passivation mechanisms and broader principles for process design of metals and zero-oxidation state compounds. We find the precursor undergoes a spontaneous decarbonylation reaction mechanism whereby the surface is initially passivated with carbonyl species that are lost with increasing temperature or time. Comparison of in situ characterization data and first principles kinetic modeling support these findings. Our results help explain inconsistencies in previous reports as well as observations of other zero-oxidation state precursors. Together, characterizing new surface mechanisms in ALD of both activating and passivating species gives a more complete picture of how a range of ALD processes can deviate from idealized and simplified self-limiting surface reactions. These findings span the breadth of both metal and metal oxide ALD, and we apply the insights to new ALD systems involving multicomponent and catalytically activated ALD processes. These grow the chemical toolbox of ALD and illustrate how a proper fundamental chemical understanding of ALD is important not only for effective implementation and control of existing processes but also for generalizing, expanding, and designing tools for ALD to further widen its horizons.

Book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces

Download or read book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces written by Lei Guo and published by . This book was released on 2015 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: A versatile home-made atomic layer deposition (ALD) reactor was designed and built in our lab. This reactor can be used to deposit metal oxides on both wafer substrates and porous inorganic particles. Also, a simple procedure for selective ALD has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with silanes was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O 3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O 3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2 O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces. We believe that the silylation-UV/O 3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.

Book Reaction Mechanisms and Dynamics in the Early Stage of High    Oxide Atomic Layer Deposition   Investigations by In Situ and Operando X ray Photoemission Spectroscopy

Download or read book Reaction Mechanisms and Dynamics in the Early Stage of High Oxide Atomic Layer Deposition Investigations by In Situ and Operando X ray Photoemission Spectroscopy written by Giulio D Acunto and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic layer deposition (ALD) is an outstanding deposition technique to deposit highly conformal and uniform thin films with atomic precision. In particular, ALD of transition metal oxide layers from metal amido complexes and water finds its way in several technological fields, including green energy devices and in the semiconductor industry. These ALD reactions are believed to follow a reaction scheme based on the ligand exchange mechanism, in which the surface on which deposition takes place plays a largely static role and the ligands of the used precursor are chemically unchanged during the reaction. To address the correctness of the model, time-resolved in situ and operando ambient pressure x-ray photoelectron spectroscopy (APXPS) technique was employed during the ALD of HfO2 on InAs covered by a thermal or native oxide, TiO2(101) and oxidised as well as clean Si(111).The classic ligand exchange reaction mechanism does not adequately describe the reaction path in any of the investigated sample systems. In particular, ALD of HfO2 on SiO2 follows a bimolecular reaction mechanism based on the insertion of an hydrogen atom of one of the ligands in an amido complex dimer. As a result of its bimolecular nature, this reaction can take place only on a SiO2 surface of a sufficiently high coverage of physisorbed complexes. Similarly, on TiO2 the early stage of the reaction is based on dissociative adsorption, followed by an intra- and inter- molecular reaction path, leading to the formation of new sets of surface species never before identified in any of the previous ALD models.For easily reducible surfaces, such as InAs oxide and TiO2, evidence is found for HfOx formation already during the first ALD half-cycle, due to the transfer of O atoms from the surface to the metal complex. Clearly, this contradicts the static role of the surface in standard ALD models. Interestingly, in the case of InAs covered by a thermal or native oxide, this phenomenon, which lies behind the so-called self cleaning effect, guarantees a sharp interface between the III-V material and HfO2, which is a prerequisite for next generation MOSFETs.These results open new doors for improving devices based on ALD. Time-resolved in situ and operando APXPS allows to follow the kinetics and mechanisms involved in ALD, in real time at second time resolution with significant benefit for the further improvement of general understanding of ALD reactions.

Book Transition Metal Oxides

Download or read book Transition Metal Oxides written by H.H. Kung and published by Elsevier. This book was released on 1989-04-01 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the author presents an up-to-date summary of existing information on the structure, electronic properties, chemistry and catalytic properties of transition metal oxides. The subjects covered in the book can be divided into three sections. The first (chapters 1 to 3) covers the structural, physical, magnetic, and electronic properties of transition metal oxides. Although the emphasis is on surface properties, relevant bulk properties are also discussed. The second section (chapters 4 to 7) covers surface chemical properties. It includes topics that describe the importance of surface coordinative unsaturation in adsorption, the formation of surface acidity and the role of acidity in determining surface chemical properties, the nature and reactivities of adsorbed oxygen, and the surface chemistry in the reduction of oxides. The third section (chapters 8 to 14) is on the catalytic properties. Various catalytic reactions including decomposition, hydrogenation, isomerization, metathesis, selective oxidation, and reactions involving carbon oxides are discussed. Emphasis is placed more on reaction mechanisms and the role of catalysts than on kinetics and processes. Chapters on the preparation of oxide catalysts and on photo-assisted processes are also included. Whenever appropriate, relationships between various topics are indicated. Written for surface physicists, chemists, and catalytic engineers, the book will serve as a useful source of information for investigators and as a comprehensive overview of the subject for graduate students.

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Chemistry of Atomic Layer Deposition

Download or read book Chemistry of Atomic Layer Deposition written by Seán Thomas Barry and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-11-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will help chemists and non-chemists alike understand the fundamentals of surface chemistry and precursor design, and how these precursors drive the processes of atomic layer deposition, and how the surface-precursor interaction governs atomic layer deposition processes. The underlying principles in atomic layer deposition rely on the chemistry of a precursor with a surface.

Book Study of the Initial Surface Reactions in Atomic Layer Deposition of Oxides  Silicides and Nitrides Thin Films on Silicon Substrates

Download or read book Study of the Initial Surface Reactions in Atomic Layer Deposition of Oxides Silicides and Nitrides Thin Films on Silicon Substrates written by Karla Maria Bernal Ramos and published by . This book was released on 2014 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, key aspects of the surface chemistry associated with atomic layer deposition (ALD) are discussed. ALD is a novel and promising film deposition technique that can deliver precise thickness control at the angstrom or monolayer level; the self-limiting aspect of ALD makes it a unique method that can lead to excellent step coverage and conformal deposition on high aspect ratio structures. In spite of its central role in efficient film deposition processes, little is known about the mechanisms of the chemical reactions involved. Even the most basic information, such as the initial surface reactions, is in many instances unknown. There is a limited knowledge on the surface chemistry (e.g., substrate, precursor's reactivity) effects for the growth of the films. Reactivity in ALD is controlled by the nature of the substrate, where specific nucleation sites are often responsible for the initial deposition and where a change in chemistry may take place as the first layer of the growing film is formed. The precursor's reactivity towards the surface being used and its properties are fundamental aspects in an ALD process. The majority of the experiments discussed in this dissertation are devoted to the elucidation of the reaction mechanisms of the thin films. The experiments are carried out using in-situ Fourier transform infrared spectroscopy (FTIR) in order to examine the chemical composition of surface adsorbates. The use of in-situ characterization techniques is crucial for better control and understanding of thin film deposition. Knowledge of the surface chemistry underpinning the ALD processes is essential in order to design precursors in a rational way that will lead to successful film growth.

Book Atomic Layer Deposition

Download or read book Atomic Layer Deposition written by Tommi Kääriäinen and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition was published in 2008, Atomic Layer Deposition (ALD) has emerged as a powerful, and sometimes preferred, deposition technology. The new edition of this groundbreaking monograph is the first text to review the subject of ALD comprehensively from a practical perspective. It covers ALD's application to microelectronics (MEMS) and nanotechnology; many important new and emerging applications; thermal processes for ALD growth of nanometer thick films of semiconductors, oxides, metals and nitrides; and the formation of organic and hybrid materials.

Book Surface Chemistry and Interface Evolution During the Atomic Layer Deposition of High k Metal Oxides on Inas 100  and Gaas 100  Surfaces

Download or read book Surface Chemistry and Interface Evolution During the Atomic Layer Deposition of High k Metal Oxides on Inas 100 and Gaas 100 Surfaces written by Alex J. Henegar and published by . This book was released on 2015 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics.

Book Atomic Layer Deposition for Surface Modifications and Solid Film Fabrication

Download or read book Atomic Layer Deposition for Surface Modifications and Solid Film Fabrication written by Haoming Yan and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with the unceasing development of the surface and material science, modification of substrates surfaces in nanoscale, to fabricate the functional materials with precisely controlled dimensions, refined composition and desired properties becomes crucial. In this report, atomic layer deposition (ALD), a vapor phase, sequential and self-limiting deposition process, has been used as an alternative strategy to modify the surface of materials and fabricates nanometer or micrometer level of functional materials with precise control. In the first part of this dissertation, ALD was used to modify the surface of the shape-engineered nanocrystals (SENCs), which enhanced the thermal stability of the SENCs from 300?C to 700?C and enhanced the catalytic activities of the nanocrystals as well. We also proposed a new reaction mechanism of metal-organic precursor with oxide surface, in which the conventional layered ALD growth does not happen but the oxide surface was modified via controlled metal doping. In the second part of this dissertation, ALD precursors were used to reacting with liquid substrates to fabricate freestanding solid thin films. Benefits from the unique reaction mechanism of the ALD metal-organic precursors, the thickness and the compositions of the fabricated films can be controlled. The fundamental of gas-liquid reaction has been discussed in this study. In the third part of this dissertation, area-selective ALD (AS-ALD) has been reported using carboxylic acid self-assembled monolayer as a growth inhibitor. Excellent selectivity of AS-ALD has been achieved by using this method, which could potentially be used in microfabrication as a substitution step for photolithography.

Book Atomic Layer Deposition and Nucleation of Metals and Metal Oxides

Download or read book Atomic Layer Deposition and Nucleation of Metals and Metal Oxides written by Berc Kalanyan and published by . This book was released on 2015 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomic Layer Deposition  ALD

Download or read book Atomic Layer Deposition ALD written by Callisto Joan MacIsaac and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern society demands smaller, more precise devices for both microelectronic and energy technologies. The development of methods and processes that can deposit reliably uniform, conformal thin films on the nanoscale is essential to fields as diverse as catalysts and solar cells. Therefore, atomic layer deposition (ALD), a thin-film deposition technique that accomplishes these goals by using self-limiting sequential reactions between alternating precursors to achieve atomic precision over the product film, is an important tool for the modern era. Combining ALD with molecular layer deposition (MLD), which follows the same principles as ALD but deposits entire organic molecules to build films, results in a powerful system that enables the deposition of inorganic, organic, and hybrid inorganic-organic materials. Understanding the nucleation mechanisms, surface reaction chemistry, and applications of these materials and ALD/MLD processes is essential to commercialization and wider use. Through in situ Fourier transform infrared (FTIR) spectroscopy, we studied the zinc-tin-oxide (ZTO) system, a ternary ALD process that is a combination of the zinc oxide and tin oxide binary ALD processes. Previous research had indicated that the ternary system is characterized by non-idealities in the ALD growth, and we identify as a potential cause of these effects incomplete removal of the ligands from the tetrakis(dimethylamino)tin precursor, which leads to a nucleation delay when depositing ZnO on SnO2. A significant fraction of the ligands remain on the surface during the ALD of SnO2 and endure when the process is switched to ZnO ALD. This result suggests that the occupation of surface reactive sites by these persisting ligands may be the cause of the observed nucleation delay with potential ramifications for many other binary and ternary systems where persisting ligands may be present. In addition, we studied the mechanism of ALD-grown MoS2 thin films. It was observed by atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and X-ray reflectivity (XRR) that nucleation proceeds by the formation of small islands that coalesce into a complete film in under 100 cycles, with further film growth failing to occur after coalescence. This inertness is attributed to the chemical inactivity of the basal planes of MoS2. It was found that the final thickness of the as-grown film is not determined by the number of ALD cycles as per the normal regime, but by the temperature that the film is deposited at. This self-limiting layer synthesis (SLS) has been reported in the literature for higher temperature depositions of MoS2, but this is the first report of the effect in a low temperature, amorphous MoS2 ALD system. The thickness of films growth by ALD with the precursors Mo(CO)6 and H2S was found to saturate at around 7 nm on both native oxide-covered silicon and bulk crystalline MoS2 substrates, which may indicate that the SLS behavior is inherent to the ALD process and not substantially a product of the substrate surface potential. Finally, we demonstrated a new ALD/MLD hybrid process that used the MoS2 ALD precursor Mo(CO)6 and the counter reagent 1,2-ethanedithiol to create a MoS2-like material with organic domains. This Mo-thiolate possesses many properties that link it to MoS2, such as activity towards the hydrogen evolution reaction (HER) and similar Raman modes, but has a significantly lower density, optical transparency, and higher geometric surface area. It was found that the process has a 1.3 Å growth per cycle and can catalyze the HER reaction at an overpotential of 294 mV at -10 mA/cm2 , which is superior to planar MoS2 and ranks the as-deposited catalyst with the best nanostructured MoS2-based catalysts. We propose that this activity comes from the higher surface area induced by the incorporation of organic chains into the films. In summary, we explored the mechanisms and nucleation behavior of several ALD systems of interest to energy applications using both in situ and ex situ analysis techniques. These studies demonstrated the importance of understanding ALD surface chemistry to the overall chemical composition of the resultant films, the ramifications of different nucleation regimes in determining morphologies, and the power of ALD/MLD in creating analogues to previously known species with improved physical properties.

Book Atomic Layer Deposited Metal Oxides for Semiconductors Used in Aqueous Solutions

Download or read book Atomic Layer Deposited Metal Oxides for Semiconductors Used in Aqueous Solutions written by Yi Wei Chen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, atomic layer deposition (ALD) has become a popular technique to deposit ultra-thin films with superior conformality and thickness control. Because of its unique surface adsorption-limited mechanism and the resulting capability of deposition at low temperatures and moderate pressures, ALD has found industrial applications in field effect transistor fabrication and coating of multilayer interconnection metallization. In this work, I have explored the potential of ALD-grown metal oxide layers in applications beyond typical electronics technologies. In particular, this research has focused on using ALD-grown metal oxides to enhance the performance and stability in aqueous solutions of biomolecular sensors and semiconducting anodes for photoelectrochemical fuel synthesis. In the biosensing application, we have replaced the SiO2 gate dielectric material typically used in high sensitivity bio-field-effect-transistors (bioFET) with high dielectric constant HfO2. The SiO2 bioFET gate dielectric suffers from poor stability and non-ideal dielectric response at the very small physical thicknesses required to achieve high sensitivity. ALD-grown HfO2, on the other hand, is capable of providing high capacitance density with a physically thicker dielectric layer, thanks to its large dielectric constant. With the ALD-HfO2 gate dielectric, biosensor switching behavior was demonstrated using capacitance-voltage measurements in water, while at the same time maintaining the desired high capacitance. In addition, we have verified bio-functionalization of the HfO2 film surface with biotin molecules via photoelectron spectroscopy, and detected streptavidin and avidin binding with capacitance-voltage analysis and molecular AFM imaging methods respectively. For the solar fuel synthesis, we have studied the behavior of ALD-TiO2 tunnel oxides that can protect heretofore unstable semiconductors, such as Si, used as photoanodes in water splitting. For several decades, intense research effort has been devoted to identifying an efficient photoelectrochemical cell for oxidizing water under solar illumination. The resulting hydrogen and oxygen can be used to store energy from the intermittent terrestrial solar resource renewably, using water as a feedstock. However, photoanode materials choices have always been limited because the water oxidation half reaction at the anode surface is highly corrosive and requires large overpotentials. As a result, only oxidation-stable wide bandgap semiconductors such as TiO2 and Fe2O3 have been used as the photoanode. These photoanodes exhibit poor efficiency, however, because of their large bandgaps. Lower bandgap semiconductors, such as Si, are capable of absorbing solar light much more efficiently, but are easily corroded during water oxidation. In this work, a silicon photoanode was passivated by a thin and pinhole-free layer of ALD-TiO2 such that efficient light absorption in the Si and the chemical stability of the TiO2 can be exploited at the same time. This ALD-grown nanocomposite photoanode has been demonstrated to perform water oxidation with low overpotentials, while at the same time maintaining good stability with hours of continuous operation. The tunneling of electronic carriers through the thin ALD-TiO2, required to sustain high oxidation rates, has also been investigated by varying the TiO2 thickness. The annealing temperature and ambient have also been investigated.

Book Atomic Layer Deposition of Materials for Electronic and Photonic Applications

Download or read book Atomic Layer Deposition of Materials for Electronic and Photonic Applications written by Francis Chalvet and published by . This book was released on 2008 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic Layer Deposition (ALD) is a technique to deposit extremely uniform thin films through surface-controlled reactions of gaseous precursors. It is the method of choice for ultrathin oxide and metal layers in the next generations of logic and memory devices, but finds application as well in nanotechnology and catalysis. An ALD reactor at laboratory scale was designed and built to study the growth of metal oxides such as Al2O3 and HfO2 on flat and porous surfaces. During the design of the process, the key aspects were the choice of two complementary chemical precursors and the time controlled injection of precursor fluxes into the deposition chamber. After assembly of the reactor the operation parameters (pressure, nitrogen throughput, precursor fluxes) were optimised. The reactor worked at vacuum pressures of about 1 torr and used a continuous flow of nitrogen for the transport of precursor gases. Uniform and controlled film growth was observed during growth of Al2O3 from trimethylaluminium and water, and during growth of HfO2 from hafnium-tetrakisdimethylamide and water. Electrical characterisation of MOS capacitors with a Pd/HfO2/Si structure and 3 or 9 nm thin layers of HfO2 showed the high quality of the insulating oxide. The deposition technique was then used to coat porous structures. Membranes with high aspect ratios pores (L/d = 300) were coated with HfO2 without modifying the process used for coating flat surfaces. The possibility offered by ALD to coat pores with a high level of control was used to tune the optical characteristics of porous photonic crystals. Opal-type photonic crystals were infiltrated with layers of Al2O3, TiO2 and VOx. The results obtained show the deposition of high quality oxide films with a thickness controllable at the nanoscale, on both flat and porous surfaces.

Book Atomic Layer Deposition of Oxide Films

Download or read book Atomic Layer Deposition of Oxide Films written by Raija Matero and published by . This book was released on 2004 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Oxide Chemistry and Synthesis

Download or read book Metal Oxide Chemistry and Synthesis written by Jean-Pierre Jolivet and published by John Wiley & Sons. This book was released on 2000-10-19 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The precipitation of metal oxides from aqueous solutions creates nanoparticles with interesting solid state properties, thus building a bridge between solution chemistry and solid state chemistry. This book is the first monograph to deal with the formation of metal oxides from aqueous solutions with emphasis on the formation and physical chemistry of nanoparticles. Metal Oxide Chemistry and Synthesis: From Solution to Solid State * Provides a comprehensive introduction to the synthesis of finely divided materials * Presents the chemistry, physics and applications of these materials * Builds a bridge between classical solution chemistry and new developments in solid state chemistry * Introduces an important new area in inorganic chemistry Part I examines the mechanism of condensation of aqueous cations leading to polynuclear species or lattices, and rationalizes the behaviour of cations in precipitation phenomena by identifying pathways from soluble species to solids. The cation complex is also analysed in relation to the synthesis of some technologically interesting polymetallic oxides, e.g. ferroelectric, ferrimagnetic and supraconductor materials. Part II is devoted to the surface chemistry of oxide particles. The basic concepts relating to the reactivity of the oxide-solution interface are introduced and applied to various adsorption phenomena, such as aggregation, stability of particle size against ripening, etc. These properties are exploited for the synthesis of nanomaterials for a broad range of applictions such as ceramic powders, catalysts and nanocomposites. This will also be of interest to those wishing to understand geochemical and some biological processes. As well as being invaluable to researchers and postgraduate students of inorganic chemistry, this book will also be appreciated by solid-state chemists, materials scientists and colloid chemists with an interest in metal oxides.

Book Chemical Vapor Deposition

Download or read book Chemical Vapor Deposition written by M. L. Hitchman and published by Academic Press. This book was released on 1993-04-13 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging volume covers recent developments in the theoretical understanding of the chemistry and physics of chemical vapour deposition (CVD). Contributors are drawn from both academia and industry to achieve a balaced coverage of the subject. The volume emphasizes principles and understanding rather than details of specific materials or processes. Specific examples are given to illustrate the principles.