EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book RF Superconductivity for Accelerators

Download or read book RF Superconductivity for Accelerators written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2008-02-26 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some of the key ideas of this exciting field, using a pedagogic approach, and presents a comprehensive overview of the field. It is divided into four parts. The first part introduces the basic concepts of microwave cavities for particle acceleration. The second part is devoted to the observed behavior of superconducting cavities. In the third part,general issues connected with beam-cavity interaction and the related issues for the critical components are covered. The final part discusses applications of superconducting cavities to frontier accelerators of the future, drawing heavily on the examples that are in their most advanced stage. Each part of the book ends in a Problems section to illustrate and amplify text material as well as draw on example applications of superconducting cavities to existing and future accelerators.

Book Superconducting Technology

Download or read book Superconducting Technology written by Kristian Fossheim and published by World Scientific. This book was released on 1991 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.

Book Superconducting Radiofrequency  SRF  Accelerator Cavities

Download or read book Superconducting Radiofrequency SRF Accelerator Cavities written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Book RF Superconductivity

Download or read book RF Superconductivity written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2009-04-20 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second book to RF Superconducting, written by one of the leading experts. The book provides fast and up-to-date access to the latest advances in the key technology for future accelerators. Experts as well as newcomers to the field will benefit from the discussion of progress in the basic science, technology as well as recent and forthcoming applications. Researchers in accelerator physics will also find much that is relevant to their discipline.

Book Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities

Download or read book Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities written by Matthew C. Burton and published by . This book was released on 2017 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ~1 μm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.

Book Superconducting Radiofrequency Technology for Accelerators

Download or read book Superconducting Radiofrequency Technology for Accelerators written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2023-05-15 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting Radiofrequency Technology for Accelerators Single source reference enabling readers to understand and master state-of-the-art accelerator technology Superconducting Radiofrequency Technology for Accelerators provides a quick yet thorough overview of the key technologies for current and future accelerators, including those projected to enable breakthrough developments in materials science, nuclear and astrophysics, high energy physics, neutrino research and quantum computing. The work is divided into three sections. The first part provides a review of RF superconductivity basics, the second covers new techniques such as nitrogen doping, nitrogen infusion, oxide-free niobium, new surface treatments, and magnetic flux expulsion, high field Q slope, complemented by discussions of the physics of the improvements stemming from diagnostic techniques and surface analysis as well as from theory. The third part reviews the on-going applications of RF superconductivity in already operational facilities and those under construction such as light sources, proton accelerators, neutron and neutrino sources, ion accelerators, and crab cavity facilities. The third part discusses planned accelerator projects such as the International Linear Collider, the Future Circular Collider, the Chinese Electron Positron Collider, and the Proton Improvement Plan-III facility at Fermilab as well as exciting new developments in quantum computing using superconducting niobium cavities. Written by the leading expert in the field of radiofrequency superconductivity, Superconducting Radiofrequency Technology for Accelerators covers other sample topics such as: Fabrication and processing on Nb-based SRF structures, covering cavity fabrication, preparation, and a decade of progress in the field SRF physics, covering zero DC resistance, the Meissner effect, surface resistance and surface impedance in RF fields, and non-local response of supercurrent N-doping and residual resistance, covering trapped DC flux losses, hydride losses, and tunneling measurements Theories for anti-Q-slope, covering the Xiao theory, the Gurevich theory, non-equilibrium superconductivity, and two fluid model based on weak defects Superconducting Radiofrequency Technology for Accelerators is an essential reference for high energy physicists, power engineers, and electrical engineers who want to understand the latest developments of accelerator technology and be able to harness it to further research interest and practical applications.

Book ELECTRON TUNNELING STUDIES OF MATERIALS FOR SUPERCONDUCTING RADIO FREQUENCY APPLICATIONS

Download or read book ELECTRON TUNNELING STUDIES OF MATERIALS FOR SUPERCONDUCTING RADIO FREQUENCY APPLICATIONS written by Eric Lechner and published by . This book was released on 2019 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radio frequency (RF) cavities are the foundational infrastructure which facilitates much of the fundamental research conducted in high energy particle physics. These RF cavities utilize their unique shape to produce resonant electromagnetic fields used to accelerate charged particles. Beside their core role in fundamental physics research, RF cavities have found application in other disciplines including material science, chemistry and biology which take advantage of their unique light sources. Industry has been keen on taking advantage of accelerator technology for a multitude of applications. Particle accelerators like the one found at Jefferson Lab's Continuous Electron Beam Accelerator Facility must produce stable beams of high energy particles which is an incredibly costly endeavor to pursue. With the gargantuan size of these facilities, the cost of high-quality beam production is a matter of great importance. The quest to find highly efficient RF cavities has resulted in the widespread use of superconducting radio frequency (SRF) cavities which are the most efficient resonators that exploit a superconductor's incredibly low AC surface resistance. While metals like Cu are up to the demanding job of RF cavity particle acceleration, their efficiency at transferring RF power to the particle beam is low when they are compared with SRF Nb cavities. Nb is the standard material for all SRF cavity technology particularly for its reproducibly low surface resistance, comparatively high transition temperature and thermodynamic critical field. Using superconducting Nb is not without its drawbacks. Keeping hundreds of Nb cavities in their superconducting state under extreme RF conditions is quite a daunting task. It requires the normal state not nucleate during operation. This is achieved by producing high-quality cavities with as few defects and impurities as possible while also keeping the cavities at low temperature, usually 2K. Again, due to the sheer scale of the facilities, hundred million-dollar cryogenic plants are required to handle the heat loads during SRF cavity operation. This means even small increases in maximum accelerating gradients or decrease in cavity surface resistance results in a sizably reduced operation cost. Considerable effort has been put forth to increase the efficiency of Nb cavities toward and even beyond the theoretical maximum accelerating gradients and quality factor for a clean superconductor. Recently, a new method to produce high quality factor cavities has emerged that involves nitrogen doping the cavity. The mechanism by which N doping causes the improvement is still not well understood, but the experimental research described in this dissertation shines some light into the mechanisms behind such a drastic improvement. These insights are universal for all superconductors and may prove useful for SRF cavities beyond Nb. With Nb approaching its fundamental limits, new materials are being proposed to increase the performance of future SRF cavities which MgB2 finds itself among. MgB2 is a two-band superconductor that possesses many properties that are very attractive for the next generation of SRF cavities. One of the most important properties is MgB2's comparatively large critical temperature which in part predicts it will have a lower surface resistance than Nb at higher operating temperatures. Such behavior of MgB2 may unlock the possibility of using cryocoolers instead of costly liquid helium plants for large scale industrial use. This dissertation starts with an introduction to superconductivity, its theory, and application to SRF cavities as well as the open questions that can be addressed in Nb and the next generation of SRF materials. A description of the experimental techniques of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy is presented. Our experimental investigation into Nb SRF cavity cutouts starts with a discussion of the material's limitations for SRF applications with an emphasis on the proximity effect which arises at the surface of this material due to its myriad of naturally forming oxides. The results of our scanning tunneling microscopy measurements for typically prepared Nb and nitrogen doped Nb follows and comparisons are made which show that the surface oxides are fundamentally different between these samples likely resulting in the profound enhancement of the cavity's quality factor. Experimental investigation into the native oxide of hot spot nitrogen doped Nb shows a degraded oxide and superconducting properties as compared with the cold spot. The dissertation continues with a brief introduction to MgB2, followed by our scanning tunneling and electron tunneling insights into MgB2. The dissertation is concluded with a summary of our investigations and broader impact of our research on the SRF community.

Book Reviews of Accelerator Science and Technology

Download or read book Reviews of Accelerator Science and Technology written by Alexander W. Chao and published by World Scientific. This book was released on 2013-01-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to superconducting technology and its applications, including superconducting magnets (SC magnets) and superconducting radio-frequency (SRF) cavities.

Book Superconducting Properties of Niobium Radio frequency Cavities

Download or read book Superconducting Properties of Niobium Radio frequency Cavities written by Gianluigi Ciovati and published by LAP Lambert Academic Publishing. This book was released on 2012 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting radio-frequency (SRF) cavities are used to increase the energy of a charged particle beam in particle accelerators throughout the world. Bulk niobium is the material of choice to fabricate SRF cavities and their performance at cryogenic temperatures is characterized by a non-linearity of the surface resistance as a function of the RF field, in absence of field emission, which limits the operational accelerating gradient. This book presents the results on the investigation of such non-linearity in cavities which received different surface and bulk treatments as well as cavities made of single-crystal niobium. The experimental methods include measurements of the surface impedance as a function of temperature, of the quality factor as a function of the RF field below 4.2 K, and the excitation of different resonant modes. A thermometry system was used to better characterize the loss mechanisms. This book consists of the author's PhD dissertation at Old Dominion University (ODU) under the supervision of Prof. Colm T. Whelan of ODU and Dr. Peter Kneisel of Jefferson Lab. This book should be useful to students or young researchers in the field of SRF for accelerators.

Book New Insights Into the Limitations on the Efficiency and Achievable Gradients in Nb3Sn SRF Cavities

Download or read book New Insights Into the Limitations on the Efficiency and Achievable Gradients in Nb3Sn SRF Cavities written by Daniel Leslie Hall and published by . This book was released on 2017 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The A15 superconductor Nb3Sn has shown great promise to replace niobium as the material of choice for the construction of superconducting radio-frequency (SRF) accelerator cavities. It promises, at least on paper, greater efficiency and higher accelerating gradients, with the potential to enable the construction of smaller yet more powerful accelerators than can be constructed using niobium. Although the state-of-the-art performance of cavities coated with Nb3Sn has shown great potential, the achievable limits in cavity quality factor Q0 and accelerating gradient Eacc are still below that expected given theoretical limits. In this work we present and discuss results of experiments carried out to understand the current limitations on Q0 and Eacc, and propose methods to improve these further. We will conclude with an outlook to the future, and the prospects that Nb3Sn could enable.

Book RF Linear Accelerators

    Book Details:
  • Author : Thomas P. Wangler
  • Publisher : John Wiley & Sons
  • Release : 2008-03-03
  • ISBN : 9783527406807
  • Pages : 476 pages

Download or read book RF Linear Accelerators written by Thomas P. Wangler and published by John Wiley & Sons. This book was released on 2008-03-03 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dieses einschlägige Lehrbuch, entwickelt auf der Grundlage der Ausbildung an der US Particle Accelerator School, schließt eine Lücke in der verfügbaren Literatur zum Thema Hochfrequenz-Linearbeschleuniger, kurz RF-Linac. Nach einer Erläuterung der naturwissenschaftlichen Grundlagen und der neuesten technologischen Eckdaten stellt diese zweite Auflage neueste RF-Linacs, spezialisierte Systeme, Systeme mit Supraleitern und verschiedene Spezialverfahren vor. Übungsaufgaben an den Kapitelenden erleichtern das Einprägen und das Nacharbeiten von Vorlesungen.

Book Toward a Science Campus in Milan

Download or read book Toward a Science Campus in Milan written by Pier Francesco Bortignon and published by Springer. This book was released on 2018-12-08 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of multidisciplinary papers presented at the Department of Physics of Milan University's congress on 28 and 29 June 2017, which was also intended as a kick-off meeting for the design of a novel science campus at the Expo site in Milan. The congress presented a snapshot of the department's research to the academic community, the media, policymakers and authorities as well as the public at large, and also provided an opportunity to strengthen interdisciplinary collaborations between the members of the department and other communities. This book is a valuable resource for scientists looking for synergetic projects, policymakers wanting to grasp scientists' points of view and for prospective graduate students seeking expanding areas of research.

Book Reviews Of Accelerator Science And Technology   Volume 5  Applications Of Superconducting Technology To Accelerators

Download or read book Reviews Of Accelerator Science And Technology Volume 5 Applications Of Superconducting Technology To Accelerators written by Alexander Wu Chao and published by World Scientific. This book was released on 2013-01-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several decades major advances in accelerators have resulted from breakthroughs in accelerator science and accelerator technology. After the introduction of a new accelerator physics concept or the implementation of a new technology, a leap in accelerator performance followed. A well-known representation of these advances is the Livingston chart, which shows an exponential growth of accelerator performance over the last seven or eight decades. One of the breakthrough accelerator technologies that support this exponential growth is superconducting technology. Recognizing this major technological advance, we dedicate Volume 5 of Reviews of Accelerator Science and Technology (RAST) to superconducting technology and its applications.Two major applications are superconducting magnets (SC magnets) and superconducting radio-frequency (SRF) cavities. SC magnets provide much higher magnetic field than their room-temperature counterparts, thus allowing accelerators to reach higher energies with comparable size as well as much reduced power consumption. SRF technology allows field energy storage for continuous wave applications and energy recovery, in addition to the advantage of tremendous power savings and better particle beam quality. In this volume, we describe both technologies and their applications. We also include discussion of the associated R&D in superconducting materials and the future prospects for these technologies.

Book Effect of Low Temperature Baking on the RF Properties of Niobium Superconducting Cavities for Particle Accelerators

Download or read book Effect of Low Temperature Baking on the RF Properties of Niobium Superconducting Cavities for Particle Accelerators written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results of these experiments and comments on existing models to explain the effect of baking on the performance of niobium RF cavities.

Book Development of Ultra High Gradient and High Q sub 0  Superconducting Radio Frequency Cavities

Download or read book Development of Ultra High Gradient and High Q sub 0 Superconducting Radio Frequency Cavities written by and published by . This book was released on 2013 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q0 superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q0 of 101° at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q0 of 2-101° at 2K.

Book Thin Film Approaches to the SRF Cavity Problem

Download or read book Thin Film Approaches to the SRF Cavity Problem written by Douglas B. Beringer and published by . This book was released on 2017 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

Book Role of Thermal Resistance on the Performance of Superconducting Radio Frequency Cavities

Download or read book Role of Thermal Resistance on the Performance of Superconducting Radio Frequency Cavities written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp).