Download or read book Differential Geometry Differential Equations and Mathematical Physics written by Maria Ulan and published by Springer Nature. This book was released on 2021-02-12 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.
Download or read book Discrete Differential Geometry written by Alexander I. Bobenko and published by American Mathematical Society. This book was released on 2023-09-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.
Download or read book Nonlinear PDEs Their Geometry and Applications written by Radosław A. Kycia and published by Springer. This book was released on 2019-05-18 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents lectures given at the Summer School Wisła 18: Nonlinear PDEs, Their Geometry, and Applications, which took place from August 20 - 30th, 2018 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures in the first part of this volume were delivered by experts in nonlinear differential equations and their applications to physics. Original research articles from members of the school comprise the second part of this volume. Much of the latter half of the volume complements the methods expounded in the first half by illustrating additional applications of geometric theory of differential equations. Various subjects are covered, providing readers a glimpse of current research. Other topics covered include thermodynamics, meteorology, and the Monge–Ampère equations. Researchers interested in the applications of nonlinear differential equations to physics will find this volume particularly useful. A knowledge of differential geometry is recommended for the first portion of the book, as well as a familiarity with basic concepts in physics.
Download or read book Differential Geometry in the Large written by Owen Dearricott and published by Cambridge University Press. This book was released on 2020-10-22 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.
Download or read book Differential Geometry of Curves and Surfaces written by Kristopher Tapp and published by Springer. This book was released on 2016-09-30 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Download or read book Complex Differential Geometry written by Fangyang Zheng and published by American Mathematical Soc.. This book was released on 2000 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometry and Quantum Field Theory written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 1995 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Download or read book Differential Geometry written by Vagn Lundsgaard Hansen and published by Springer. This book was released on 2006-11-15 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nordic Summer School 1985 presented to young researchers the mathematical aspects of the ongoing research stemming from the study of field theories in physics and the differential geometry of fibre bundles in mathematics. The volume includes papers, often with original lines of attack, on twistor methods for harmonic maps, the differential geometric aspects of Yang-Mills theory, complex differential geometry, metric differential geometry and partial differential equations in differential geometry. Most of the papers are of lasting value and provide a good introduction to their subject.
Download or read book Lectures on Symplectic Geometry written by Ana Cannas da Silva and published by Springer. This book was released on 2004-10-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Download or read book Differential Geometry and Topology written by A.T. Fomenko and published by Springer. This book was released on 1987-05-31 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear PDE s and Applications written by Stefano Bianchini and published by Springer Science & Business Media. This book was released on 2011-07-30 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the notes of the CIME course "Nonlinear PDE’s and applications" held in Cetraro (Italy) on June 23–28, 2008. It consists of four series of lectures, delivered by Stefano Bianchini (SISSA, Trieste), Eric A. Carlen (Rutgers University), Alexander Mielke (WIAS, Berlin), and Cédric Villani (Ecole Normale Superieure de Lyon). They presented a broad overview of far-reaching findings and exciting new developments concerning, in particular, optimal transport theory, nonlinear evolution equations, functional inequalities, and differential geometry. A sampling of the main topics considered here includes optimal transport, Hamilton-Jacobi equations, Riemannian geometry, and their links with sharp geometric/functional inequalities, variational methods for studying nonlinear evolution equations and their scaling properties, and the metric/energetic theory of gradient flows and of rate-independent evolution problems. The book explores the fundamental connections between all of these topics and points to new research directions in contributions by leading experts in these fields.
Download or read book Calabi Yau Manifolds and Related Geometries written by Mark Gross and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS
Download or read book Electricity and Magnetism for Mathematicians written by Thomas A. Garrity and published by Cambridge University Press. This book was released on 2015-01-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maxwell's equations have led to many important mathematical discoveries. This text introduces mathematics students to some of their wonders.
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Download or read book Geometric Combinatorics written by Ezra Miller and published by American Mathematical Soc.. This book was released on 2007 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. This text is a compilation of expository articles at the interface between combinatorics and geometry.
Download or read book Differential Geometry Of Curves And Surfaces written by Masaaki Umehara and published by World Scientific Publishing Company. This book was released on 2017-05-12 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'In a class populated by students who already have some exposure to the concept of a manifold, the presence of chapter 3 in this text may make for an unusual and interesting course. The primary function of this book will be as a text for a more conventional course in the classical theory of curves and surfaces.'MAA ReviewsThis engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well.Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates.Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities.In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field.
Download or read book Nonlinear partial differential equations in differential geometry written by Robert Hardt and published by American Mathematical Soc.. This book was released on 1996 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.