EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures

Download or read book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures written by Victor A. Drits and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals.

Book Structure Analysis by Electron Diffraction

Download or read book Structure Analysis by Electron Diffraction written by B. K. Vainshtein and published by Elsevier. This book was released on 2013-10-22 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structure Analysis by Electron Diffraction focuses on the theory and practice of studying the atomic structure of crystalline substances through electron diffraction. The publication first offers information on diffraction methods in structure analysis and the geometrical theory of electron diffraction patterns. Discussions focus on the fundamental concepts of the theory of scattering and structure analysis of crystals, structure analysis by electron diffraction, formation of spot electron diffraction patterns, electron diffraction texture patterns, and polycrystalline electron diffraction patterns. The text then ponders on intensities of reflections, including atomic scattering, temperature factor, structure amplitude, experimental measurements of intensity, and review of equations for intensities of reflections in electron diffraction patterns. The manuscript examines the Fourier methods in electron diffraction and experimental electron diffraction structure investigations. Topics include the determination of the structure of the hydrated chlorides of transition metals; structures of carbides and nitrides of certain metals and semi-conducting alloys; electron diffraction investigation of clay minerals; and possibilities inherent in structure analysis by electron diffraction. The book is a helpful source of data for readers interested in structure analysis by electron diffraction.

Book X Ray Diffraction Crystallography

Download or read book X Ray Diffraction Crystallography written by Yoshio Waseda and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

Book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures

Download or read book Electron Diffraction and High Resolution Electron Microscopy of Mineral Structures written by Victor A. Drits and published by Springer. This book was released on 1987-07-08 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decision of Springer-Verlag to publish this book in English came as a pleasant surprise. The fact is that I started writing the first version of the book back in 1978. I wished to attract attention to potentialities inherent in selected-area electron diffraction (SAED) which, for various reasons, were not being put to use. By that time, I had at my disposal certain structural data on natural and synthetic minerals obtained using SAED and high-resolution electron microscopy (HREM), and this stimulated my writing this book. There were several aspects concerning these data that I wished to emphasize. First, it was mostly new and understudied minerals that possess the peculiar structural features studied by SAED and HREM. This could interest mineralogists, crystallo chemists, and crystallographers. Second, the results obtained indi cated that, under certain conditions, SAED could be an effective, and sometimes the only possible, method for structure analysis of minerals. This inference was of primary importance, since fine dispersion and poor crystallinity of numerous natural and synthe tic minerals makes their structure study by conventional diffrac tion methods hardly possible. Third, it was demonstrated that in many cases X-ray powder diffraction analysis of dispersed miner als ought to be combined with SAED and local energy dispersion analysis. This was important, since researchers in structural min eralogy quite often ignored, and still ignore even the simplest in formation which is readily available from geometrical analysis of SAED patterns obtained from microcrystals.

Book X Ray Diffraction Topography

Download or read book X Ray Diffraction Topography written by B. K. Tanner and published by Elsevier. This book was released on 2013-10-22 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-Ray Diffraction Topography presents an elementary treatment of X-ray topography which is comprehensible to the non-specialist. It discusses the development of the principles and application of the subject matter. X-ray topography is the study of crystals which use x-ray diffraction. Some of the topics covered in the book are the basic dynamical x-ray diffraction theory, the Berg-Barrett method, Lang's method, double crystal methods, the contrast on x-ray topography, and the analysis of crystal defects and distortions. The crystals grown from solution are covered. The naturally occurring crystals are discussed. The text defines the meaning of melt, solid state and vapour growth. An analysis of the properties of inorganic crystals is presented. A chapter of the volume is devoted to the characteristics of metals. Another section of the book focuses on the production of ice crystals and the utilization of oxides as laser materials. The book will provide useful information to chemists, scientists, students and researchers.

Book Crystal Structure Analysis

    Book Details:
  • Author : Jenny Pickworth Glusker
  • Publisher : Oxford University Press
  • Release : 2010-05-27
  • ISBN : 0199576343
  • Pages : 299 pages

Download or read book Crystal Structure Analysis written by Jenny Pickworth Glusker and published by Oxford University Press. This book was released on 2010-05-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to explain why molecular structure can be determined by single-crystal diffraction of X rays. It is not an account of the practical procedural details, but rather an account of the underlying physical principles, and the kinds of experiments and methods of handling the experimental data that are used.

Book Structural refinement of single crystals using digital large angle convergent beam electron diffraction

Download or read book Structural refinement of single crystals using digital large angle convergent beam electron diffraction written by AJM Hubert and published by University of Warwick. This book was released on 2019-09-25 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: We explore the capability of digital-large angle convergent beam electron diffraction (D-LACBED) data for the structural refinement of single crystals. To achieve this, we use three materials as test cases. We use corundum for atomic position refi nement, copper and gallium arsenide for Debye-Waller factor (DWF) re finement. D-LACBED patterns are found to be extremely sensitive to atomic position, within 0.4 pm of reference X-ray values. The patterns are less sensitive to DWF (using the independent atom model - IAM) but nonetheless give good agreement to X-ray and Mossbauer radiation values for copper. We find the IAM to be insufficient for accurate refinement of gallium arsenide due to the influence of previously suggested strong anharmonicity and bonding within the material. Finally, we use simulation to explore the sensitivity of D-LACBED patterns through most re fineable structural parameters, providing context to the aforementioned results. During the analysis we see that higher g-vector patterns within the D-LACBED data may be more sensitive to structural parameters in general.

Book Structure Sensitive Properties of Materials Disclosed by a Combination of X Ray Topography X Ray Diffraction Analysis  and Electron Microscopy Methods

Download or read book Structure Sensitive Properties of Materials Disclosed by a Combination of X Ray Topography X Ray Diffraction Analysis and Electron Microscopy Methods written by S. Weissman and published by . This book was released on 1974 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: To establish a significant correlation between lattice defects and structure-sensitive properties it is frequently desirable to combine various methods of structural analysis which provide supplementary information and have a synergistic effect on the course of study. Such combination methods have been developed in this laboratory. They comprise: (a) selected area X-ray topography, (b) X-ray line profile analysis, (c) anomalous X-ray transmission topography, (d) X-ray double-crystal diffractometry, (e) analysis of plastic and elastic strain distribution by disturbance of X-ray pendellösung fringes (PF), (f) transmission electron microscopy (TEM) of dislocation structure in selected areas of the specimen, and (g) scanning electron microscopy (SEM) of the specimen. Examples of the application of these combination methods are presented that include the tensile and compressive deformation of beryllium crystals, the deformation and fracture of germanium and silicon crystals, and the elucidation of the distribution of microplastic and elastic strains in crack propagation.

Book The Basics of Crystallography and Diffraction

Download or read book The Basics of Crystallography and Diffraction written by Christopher Hammond and published by Oxford University Press. This book was released on 2015 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear and very broadly based introduction to crystallography, light, X-ray and electron diffraction - a knowledge which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematicallydetailed texts. The text is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.The book shows how an understanding of crystal structures, both inorganic and organic may be built up from simple ideas of atomic and molecular packing. Beginning with (two dimensional) examples of patterns and tilings, the concepts of lattices, symmetry point and space groups are developed."Penrose" tilings and quasiperiodic structures are also included. The reciprocal lattice and its importance in understanding the geometry of light, X-ray and electron diffraction patterns is explained in simple terms, leading to Fourier analysis in diffraction, crystal structure determination, imageformation and the diffraction-limited resolution in these techniques. Practical X-ray and electron diffraction techniques and their applications are described. A recurring theme is the common principles: the techniques are not treated in isolation.The fourth edition has been revised throughout, and includes new sections on Fourier analysis, Patterson maps, direct methods, charge flipping, group theory in crystallography, and a new chapter on the description of physical properties of crystals by tensors (Chapter 14).

Book Fifty Years of X Ray Diffraction

Download or read book Fifty Years of X Ray Diffraction written by P.P. Ewald and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: Origin, Scope, and Plan of this Book In July 1962 the fiftieth anniversary of Max von Laue's discovery of the Diffraction of X-rays by crystals is going to be celebrated in Munich by a large international group of crystallographers, physi cists, chemists, spectroscopists, biologists, industrialists, and many others who are employing the methods based on Laue's discovery for their own research. The invitation for this celebration will be issued jointly by the Ludwig Maximilian University of Munich, where the discovery was made, by the Bavarian Academy of Sciences, where it was first made public, and by the International Union of Crystallo graphy, which is the international organization of the National Committees of Crystallography formed in some 30 countries to repre sent and advance the interests of the 3500 research workers in this field. The year 1912 also is the birth year of two branches of the physical sciences which developed promptly from Laue's discovery, namely X-ray Crystal Structure Analysis which is most closely linked to the names ofW. H. (Sir William) Bragg and W. L. (Sir Lawrence) Bragg, and X-ray Spectroscopy which is associated with the names of W. H. Bragg, H. G. J. Moseley, M. de Broglie and Manne Siegbahn. Crystal Structure Analysis began in November 1912 with the first papers ofW. L. Bragg, then still a student in Cambridge, in which, by analysis of the Laue diagrams _of zinc blende, he determined the correct lattice upon which the structure of this crystal is built.

Book Advances in Structure Research by Diffraction Methods

Download or read book Advances in Structure Research by Diffraction Methods written by R. Brill and published by Elsevier. This book was released on 2013-10-22 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next chapter describes the dynamical theory of electron diffraction, paying particular attention to unconventional structure analysis in connection with the problems of absorption. The most important features of the background of small angle analysis are then examined, and some examples showing the direct analysis of small angle scattering (sometimes in combination with wide angle scattering) are provided. The last chapter deals with crystals built from molecules and their peculiar geometrical features. The principle of close packing of molecules in an organic crystal is also described, along with lattice dynamics, hydrogen bonds in crystals, and the rotational crystalline state. This monograph will be a useful resource for practitioners and researchers in physics and crystallography.

Book Modern X Ray Analysis on Single Crystals

Download or read book Modern X Ray Analysis on Single Crystals written by Peter Luger and published by Walter de Gruyter. This book was released on 2011-09-08 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Uniting Electron Crystallography and Powder Diffraction

Download or read book Uniting Electron Crystallography and Powder Diffraction written by Ute Kolb and published by Springer. This book was released on 2012-12-20 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination. This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of disciplines and materials stretching from archeometry to zeolites. As such, it is a comprehensive and valuable resource for those wishing to gain an understanding of the broad applicability of these two rapidly developing fields.

Book Fundamentals of Crystallography  Powder X Ray Diffraction  and Transmission Electron Microscopy for Materials Scientists

Download or read book Fundamentals of Crystallography Powder X Ray Diffraction and Transmission Electron Microscopy for Materials Scientists written by Dong ZhiLi and published by CRC Press. This book was released on 2022 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure-property relationship is a key topic in materials science and engineering. To understand why a material displays certain behaviors, the first step is to resolve its crystal structure and reveal its structure characteristics. Fundamentals of Crystallography, Powder X-ray Diffraction, and Transmission Electron Microscopy for Materials Scientists equips readers with an in-depth understanding of using powder x-ray diffraction and transmission electron microscopy for the analysis of crystal structures. Introduces fundamentals of crystallography Covers XRD of materials, including geometry and intensity of diffracted x-ray beams and experimental methods Describes TEM of materials and includes atomic scattering factors, electron diffraction, and diffraction and phase contrasts Discusses applications of HRTEM in materials research Explains concepts used in XRD and TEM lab training Based on the author's course lecture notes, this text guides materials science and engineering students with minimal reliance on advanced mathematics. It will also appeal to a broad spectrum of readers, including researchers and professionals working in the disciplines of materials science and engineering, applied physics, and chemical engineering.

Book Advanced X ray Crystallography

Download or read book Advanced X ray Crystallography written by Kari Rissanen and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Studies of Crystal Structure and Bonding, by Angelo Gavezzotti Cryo-Crystallography: Diffraction at Low Temperature and More, by Piero Macchi High-Pressure Crystallography, by Malcolm I. McMahon Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives, by Panče Naumov Powder Diffraction Crystallography of Molecular Solids, by Kenneth D. M. Harris

Book Structure Determination by X Ray Crystallography

Download or read book Structure Determination by X Ray Crystallography written by M. Ladd and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystallography may be described as the science of the structure of materi als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain mathematical results are assumed in order that their applications may be discussed. At the end of each chapter, a short bibliog raphy is given, which may be used to extend the scope of the treatment given here. In addition, reference is made in the text to specific sources of information. We have chosen not to discuss experimental methods extensively, as we consider that this aspect of crystallography is best learned through practical experience, but an attempt has been made to simulate the interpretive side of experimental crystallography in both examples and exercises.