EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study on Microextrusion based 3D Bioprinting and Bioink Crosslinking Mechanisms

Download or read book Study on Microextrusion based 3D Bioprinting and Bioink Crosslinking Mechanisms written by Liliang Ouyang and published by Springer. This book was released on 2019-08-10 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive study on microextrusion-based 3D bioprinting technologies for bioinks with various crosslinking mechanisms, chiefly focusing on the bioprinting process and bioink properties to provide readers with a better understanding of this state-of-the-art technology. Further, it summarizes a number of general criteria and research routes for microextrusion-based 3D bioprinting using three experimental studies based on shear-thinning, thermo-sensitive and non-viscous hydrogel bioinks. The book also presents sample applications in the areas of stem cells and cell matrix interaction. The book highlights pioneering results in the development of bioprinting technologies and bioinks, which were published in high-quality journals such as Advanced Materials, Biofabrication and ACS Biomaterials Science & Engineering. These include an in-situ crosslinking strategy that overcomes the viscosity limits for bioinks, which is virtually impossible using conventional strategies, and can be generalized for other bioink formulations.

Book Crosslinking Strategies for 3D Bioprinting of Engineered Hydrogels

Download or read book Crosslinking Strategies for 3D Bioprinting of Engineered Hydrogels written by Sarah Mei Hull and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D bioprinting has demonstrated potential for spatially patterning cells and materials together to create structures that recapitulate native tissue. By mimicking these structural features, bioprinted constructs can serve as in vitro models for basic research or can be implanted into the body for regenerative medicine applications. However, this technique is limited by a lack of suitable soft materials for use as bioinks since it remains challenging to design materials that are both printable and can support cell culture. In addition, as matrix material properties are known to influence cell phenotype and behavior, it is becoming increasingly important to tailor the bioink's properties to each individual cell type in order to create more complex, functional printed structures. In this thesis, I explore how engineered, tunable hydrogels can be used to address the current limitations of 3D bioprinting and then develop crosslinking strategies to control the mechanical, biochemical, and dynamic behavior of bioink materials before and after printing.

Book Medical Physics

    Book Details:
  • Author : Anna Bajek
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2021-08-02
  • ISBN : 3110662302
  • Pages : 263 pages

Download or read book Medical Physics written by Anna Bajek and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern cancer research is a high-tech undertaking, overlapping with many fields in the physical sciences. These include nanotechnology, engineering, immunology, and bioinformatics. This book focuses on the science and technology underlying the diagnosis and treatement of cancer. The authors offer insights into technologies including radiotherapy, modelling, and drug encapsulation.

Book 3D Printing and Biofabrication

Download or read book 3D Printing and Biofabrication written by Aleksandr Ovsianikov and published by Springer. This book was released on 2018-06-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.

Book 3D Bioprinting in Medicine

Download or read book 3D Bioprinting in Medicine written by Murat Guvendiren and published by Springer. This book was released on 2019-08-02 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides current and emerging developments in bioprinting with respect to bioprinting technologies, bioinks, applications, and regulatory pathways. Topics covered include 3D bioprinting technologies, materials such as bioinks and bioink design, applications of bioprinting complex tissues, tissue and disease models, vasculature, and musculoskeletal tissue. The final chapter is devoted to clinical applications of bioprinting, including the safety, ethical, and regulatory aspects. This book serves as a go-to reference on bioprinting and is ideal for students, researchers and professionals, including those in academia, government, the medical industry, and healthcare.

Book 3D Bioprinting

    Book Details:
  • Author : Ibrahim Tarik Ozbolat
  • Publisher : Academic Press
  • Release : 2016-11-21
  • ISBN : 0128030305
  • Pages : 358 pages

Download or read book 3D Bioprinting written by Ibrahim Tarik Ozbolat and published by Academic Press. This book was released on 2016-11-21 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Bioprinting: Fundamentals, Principles and Applications provides the latest information on the fundamentals, principles, physics, and applications of 3D bioprinting. It contains descriptions of the various bioprinting processes and technologies used in additive biomanufacturing of tissue constructs, tissues, and organs using living cells. The increasing availability and decreasing costs of 3D printing technologies are driving its use to meet medical needs, and this book provides an overview of these technologies and their integration. Each chapter discusses current limitations on the relevant technology, giving future perspectives. Professor Ozbolat has pulled together expertise from the fields of bioprinting, tissue engineering, tissue fabrication, and 3D printing in his inclusive table of contents. Topics covered include raw materials, processes, machine technology, products, applications, and limitations. The information in this book will help bioengineers, tissue and manufacturing engineers, and medical doctors understand the features of each bioprinting process, as well as bioink and bioprinter types. In addition, the book presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics. Describes all aspects of the bioprinting process, from bioink processing through design for bioprinting, bioprinting techniques, bioprinter technologies, organ printing, applications, and future trends Provides a detailed description of each bioprinting technique with an in-depth understanding of its process modeling, underlying physics and characteristics, suitable bioink and cell types printed, and major accomplishments achieved thus far Explains organ printing technology in detail with a step-by-step roadmap for the 3D bioprinting of organs from isolating stem cells to the post-transplantation of organs Presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics

Book 3D Bioprinting

    Book Details:
  • Author : Jeremy M. Crook
  • Publisher : Springer Nature
  • Release : 2020-03-23
  • ISBN : 1071605208
  • Pages : 264 pages

Download or read book 3D Bioprinting written by Jeremy M. Crook and published by Springer Nature. This book was released on 2020-03-23 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the latest developments and contributions to the field of 3D bioprinting, and discusses its use for quality R&D and translation. The chapters in this book are divided into two parts: Part one covers generic themes in bioprinting to introduce novice readers to the field, while also providing experts with new and helpful information. Part two discusses protocols used to prepare, characterize, and print a variety of biomaterials, cells, and tissues. These chapters also emphasize methods used for printing defined and humanized constructs suitable for human tissue modelling in research and applicable to clinical product development. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, 3D Bioprinting: Methods and Protocols is a valuable resource for researchers and bioprinting laboratories/facilities interested in learning more about this rapidly evolving technology.

Book 3D Bioprinting in Regenerative Engineering

Download or read book 3D Bioprinting in Regenerative Engineering written by Ali Khademhosseini and published by CRC Press. This book was released on 2018-04-17 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regenerative engineering is the convergence of developmental biology, stem cell science and engineering, materials science, and clinical translation to provide tissue patches or constructs for diseased or damaged organs. Various methods have been introduced to create tissue constructs with clinically relevant dimensions. Among such methods, 3D bioprinting provides the versatility, speed and control over location and dimensions of the deposited structures. Three-dimensional bioprinting has leveraged the momentum in printing and tissue engineering technologies and has emerged as a versatile method of fabricating tissue blocks and patches. The flexibility of the system lies in the fact that numerous biomaterials encapsulated with living cells can be printed. This book contains an extensive collection of papers by world-renowned experts in 3D bioprinting. In addition to providing entry-level knowledge about bioprinting, the authors delve into the latest advances in this technology. Furthermore, details are included about the different technologies used in bioprinting. In addition to the equipment for bioprinting, the book also describes the different biomaterials and cells used in these approaches. This text: Presents the principles and applications of bioprinting Discusses bioinks for 3D printing Explores applications of extrusion bioprinting, including past, present, and future challenges Includes discussion on 4D Bioprinting in terms of mechanisms and applications

Book 3D Bioprinting

    Book Details:
  • Author : Dong-Woo Cho
  • Publisher : Springer Nature
  • Release : 2019-12-04
  • ISBN : 303032222X
  • Pages : 124 pages

Download or read book 3D Bioprinting written by Dong-Woo Cho and published by Springer Nature. This book was released on 2019-12-04 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text advances fundamental knowledge in modeling in vitro tissues/organs as an alternative to 2D cell culture and animal testing. Prior to engineering in vitro tissues/organs,the descriptions of prerequisites (from pre-processing to post-processing) in modeling in vitro tissues/organs are discussed. The most prevalent technologies that have been widely used for establishing the in vitro tissue/organ models are also described, including transwell, cell spheroids/sheets, organoids, and microfluidic-based chips. In particular, the authors focus on 3D bioprinting in vitro tissue/organ models using tissue-specific bioinks. Several representative bioprinting methods and conventional bioinks are introduced. As a bioink source, decellularized extracellular matrix (dECM) are importantly covered, including decellularization methods, evaluation methods for demonstrating successful decellularization, and material safety. Taken together, the authors delineate various application examples of 3D bioprinted in vitro tissue/organ models especially using dECM bioinks.

Book Cell Assembly with 3D Bioprinting

Download or read book Cell Assembly with 3D Bioprinting written by Yong He and published by John Wiley & Sons. This book was released on 2022-03-14 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an up-to-date outline of cell assembly methods and applications of 3D bioprinting Cell Assembly with 3D Bioprinting provides an accesible overview of the layer-by-layer manufacturing of living structures using biomaterials. Focusing on technical implemention in medical and bioengineering applications, this practical guide summarize each key aspect of the 3D bioprinting process. Contributions from a team of leading researchers describe bioink preparation, printing method selection, experimental protocols, integration with specific applications, and more. Detailed, highly illustrated chapters cover different bioprinting approaches and their applications, including coaxial bioprinting, digital light projection, direct ink writing, liquid support bath-assisted 3D printing, and microgel-, microfiber-, and microfluidics-based biofabrication. The book includes practical examples of 3D bioprinting, a protocol for typical 3D bioprinting, and relevant experimental data drawn from recent research. * Highlights the interdisciplinary nature of 3D bioprinting and its applications in biology, medicine, and pharmaceutical science * Summarizes a variety of commonly used 3D bioprinting methods * Describes the design and preparation of various types of bioinks * Discusses applications of 3D bioprinting such as organ development, toxicological research, clinical transplantation, and tissue repair Covering a wide range of topics, Cell Assembly with 3D Bioprinting is essential reading for advanced students, academic researchers, and industry professionals in fields including biomedicine, tissue engineering, bioengineering, drug development, pharmacology, bioglogical screening, and mechanical engineering.

Book Bioengineering and Translational Research for Bone and Joint Diseases

Download or read book Bioengineering and Translational Research for Bone and Joint Diseases written by Weili Fu and published by Frontiers Media SA. This book was released on 2022-10-06 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 3D Printing for Tissue Engineering and Regenerative Medicine

Download or read book 3D Printing for Tissue Engineering and Regenerative Medicine written by Murat Guvendiren and published by MDPI. This book was released on 2020-12-02 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient’s own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.

Book Essentials of 3D Biofabrication and Translation

Download or read book Essentials of 3D Biofabrication and Translation written by Anthony Atala and published by Academic Press. This book was released on 2015-07-17 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. Provides a new and versatile method to fabricating living tissue Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction Describes current approaches and future challenges for translational science Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms

Book 3D Bioprinting for Reconstructive Surgery

Download or read book 3D Bioprinting for Reconstructive Surgery written by Daniel J. Thomas and published by Woodhead Publishing. This book was released on 2017-11-14 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. Discusses new possibilities in tissue engineering with 3D printing Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues Reviews emerging technologies in addition to commercial techniques

Book 3D Bioprinting from Lab to Industry

Download or read book 3D Bioprinting from Lab to Industry written by Prosenjit Saha and published by John Wiley & Sons. This book was released on 2024-07-23 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete overview of bioprinting, from fundamentals and essential topics to recent advances and future applications Additive manufacturing, also known as 3D printing, is one of the most transformative technological processes to emerge in recent decades. Its layer-by-layer construction method can create objects to remarkably precise specifications with minimal waste or energy consumption. Bioprinting, a related process that employs cells and biomaterials instead of man-made substances or industrial materials, has a range of biomedical and chemical uses that make it an exciting and fast-growing area of research. 3D Bioprinting from Lab to Industry offers a cutting-edge overview of this topic, its recent advances, and its future applications. Taking an interdisciplinary approach to a flourishing research field, this book exceeds all existing treatments of the subject in its scope and comprehensiveness. Moving from fundamental principles of the technology to its immense future potential, this is a must-own volume for scientists looking to incorporate this process into their research or product development. 3D Bioprinting from Lab to Industry readers will also find: Treatment of printing parameters, surface topography requirements, and much more Detailed discussion of topics including 5D printing in the medical field, dynamic tuning, the multi-material extrusion approach, and many others A complete account of the bioprinting process, from lab requirements to commercialization 3D Bioprinting from Lab to Industry is ideal for researchers—graduate and post-doctoral scholars—in the areas of materials science, biomedical engineering, chemical engineering, biotechnology, and biochemistry.

Book A Photo crosslinkable Soy derived Bioink for 3D Bioprinting

Download or read book A Photo crosslinkable Soy derived Bioink for 3D Bioprinting written by Kyle Schwab and published by . This book was released on 2021 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soy protein isolate (SPI) has become increasingly attractive for tissue engineering purposes because of its abundance in nature (a plant-derived protein), ease of isolation and processing, customizable biodegradability, inexpensive cost, and minimal immunogenicity. Combining SPI with methacrylic anhydride to form soy-methacryloyl (SoyMA) makes it possible to develop a semi-synthetic bioink that can recapitulate in-vivo tissue constructs when extruded by a three-dimensional (3D) bioprinter. Bioinks offer an ideal biological microenvironment for cells and can be photo-crosslinked easily, ensuring cell encapsulation and form fidelity. The long-term goal of this research is to demonstrate that SoyMA bioinks can be synthesized to form a 3D cell culture material with a particular degree of functionalization (DoF). Specifically, I propose to develop SoyMA bioinks that can be used to fabricate scaffolds mimicking the microenvironment of spinal cord tissue using neuronal progenitor cells (pheochromocytoma (PC12) cells) and endothelial cells (EC). Using 3D bioprinting, we will test the ability of these scaffolds to promote cell adhesion, directed spreading, and proliferation. TO control the mechanical properties of SoyMA, we will parametrically vary polymerization conditions such as concentration, DoF, and photo-crosslinking. We will also evaluate and compare cell viability and morphology of cells grown in various stiffnesses of SoyMA scaffolds. Taken together, we will demonstrate how SoyMA bioinks, coupled with 3D bioprinting, can be used to fabricate dynamic and tunable tissue scaffolds.

Book Bioprinting in Regenerative Medicine

Download or read book Bioprinting in Regenerative Medicine written by Kursad Turksen and published by Springer. This book was released on 2015-09-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the current state of laser-assisted bioprinting, a cutting edge tissue engineering technology. Nineteen chapters discuss the most recent developments in using this technology for engineering different types of tissue. Beginning with an overview, the discussion covers bioprinting in cell viability and pattern viability, tissue microfabrication to study cell proliferation, microenvironment for controlling stem cell fate, cell differentiation, zigzag cellular tubes, cartilage tissue engineering, osteogenesis, vessel substitutes, skin tissue and much more. Because bioprinting is on its way to becoming a dominant technology in tissue-engineering, Bioprinting in Regenerative Medicine is essential reading for those researching or working in regenerative medicine, tissue engineering or translational research. Those studying or working with stem cells who are interested in the development of the field will also find the information invaluable.