EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study of the Dispersion of Heavy particle Sets in Turbulent Flows and of the Fractal Geometry of Heavy particle Line Using Kinematic Simulation to Enhance Fluid Power Systems

Download or read book Study of the Dispersion of Heavy particle Sets in Turbulent Flows and of the Fractal Geometry of Heavy particle Line Using Kinematic Simulation to Enhance Fluid Power Systems written by Ahmed Abou El-Azm Aly and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence  Fractal Methods and Synthetic Turbulence

Download or read book New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence Fractal Methods and Synthetic Turbulence written by F.C.G.A. Nicolleau and published by Springer Science & Business Media. This book was released on 2011-10-29 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig’s activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress.

Book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards

Download or read book Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards written by and published by . This book was released on 2009 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particles in Turbulent Flows

Download or read book Particles in Turbulent Flows written by Leonid I. Zaichik and published by John Wiley & Sons. This book was released on 2008-12-04 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.

Book Collective Dynamics of Particles

Download or read book Collective Dynamics of Particles written by Cristian Marchioli and published by Springer. This book was released on 2017-02-21 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

Book New Approaches and Concepts in Turbulence

Download or read book New Approaches and Concepts in Turbulence written by T. Dracos and published by Birkhäuser. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of a colloquium held in Monte Verit from September 9-13, 1991. Special care has been taken to devote adequate space to the scientific discussions, which claimed about half of the time available. Scientists from all over the world presented their views on the importance of kinematic properties, topology and fractal geometry, and on the dynamic behaviour of turbulent flows. They debated the importance of coherent structures and the possibility to incorporate these in the statistical theory of turbulence, as well as their significance for the reduction of the degrees of freedom and the prospective of dynamical systems and chaos approaches to the problem of turbulence. Also under discussion was the relevance of these new approaches to the study of the instability and the origin of turbulence, and the importance of numerical and physical experiments in improving the understanding of turbulence.

Book The Motion of Heavy Particles in Turbulent Flows

Download or read book The Motion of Heavy Particles in Turbulent Flows written by Tatsuo Ushijima and published by . This book was released on 1998 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows

Download or read book Modeling Approaches and Computational Methods for Particle laden Turbulent Flows written by Shankar Subramaniam and published by Academic Press. This book was released on 2022-10-20 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. Provides a comprehensive introduction to the phenomena of particle laden turbulent flow Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation Describes a wide range of innovative applications of these models

Book Dynamics of Non Spherical Particles in Turbulence

Download or read book Dynamics of Non Spherical Particles in Turbulence written by Luis Blay Esteban and published by Springer. This book was released on 2019-08-13 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the dynamics of 2D objects moving through turbulent fluids. It examines the decay of turbulence over extended time scales, and compares the dynamics of non-spherical particles moving through still and turbulent fluids. The book begins with an introduction to the project, its aims, and its relevance for industrial applications. It then discusses the movement of planar particles in quiescent fluid, and presents the numerous methodologies used to measure it. The book also presents a detailed analysis of the falling style of irregular particles, which makes it possible to estimate particle trajectory and wake morphology based on frontal geometry. In turn, the book provides the results of an analysis of physically constrained decaying turbulence in a laboratory setting. These results suggest that large-scale cut-off in numerical simulations can result in severe bias in the computed turbulent kinetic energy for long waiting times. Combining the main text with a wealth of figures and sketches throughout, the book offers an accessible guide for all engineering students with a basic grasp of fluid mechanics, while the key findings will also be of interest to senior researchers.

Book Particle Dynamics in Turbulence

Download or read book Particle Dynamics in Turbulence written by Peter Dearborn Huck and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence is well known for its ability to efficiently disperse matter, whether it be atmospheric pollutants or gasoline in combustion motors. Two considerations are fundamental when considering such situations. First, the underlying flow may have a strong influence of the behavior of the dispersed particles. Second, the local concentration of particles may enhance or impede the transport properties of turbulence. This dissertation addresses these points separately through the experimental study of two different turbulent flows. The first experimental device used is the so-called von K\'arm\'an flow which consists of an enclosed vessel filled with water that is forced by two counter rotating disks creating a strongly inhomogeneous and anisotropic turbulence. Two high-speed cameras permitted the creation a trajectory data base particles that were both isodense and heavier than water but were smaller than the smallest turbulent scales. The trajectories of this data base permitted a study of the turbulent kinetic energy budget which was shown to directly related to the transport properties of the turbulent flow. The heavy particles illustrate the role of flow anisotropy in the dispersive dynamics of particles dominated by effects related to their inertia. The second flow studied was a wind tunnel seeded with micrometer sized water droplets which was used to study the effects of local concentration of the settling velocities of these particles. A model based on theoretical multi-phase methods was developed in order to take into account the role of collective effects on sedimentation in a turbulent flow. The theoretical results emphasize the role of coupling between the underlying flow and the dispersed phase.

Book The Interaction of Particles with Homogeneous Turbulence

Download or read book The Interaction of Particles with Homogeneous Turbulence written by Kyle David Squires and published by . This book was released on 1990 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulence

    Book Details:
  • Author : Frans T.M. Nieuwstadt
  • Publisher : Springer
  • Release : 2016-07-04
  • ISBN : 3319315994
  • Pages : 288 pages

Download or read book Turbulence written by Frans T.M. Nieuwstadt and published by Springer. This book was released on 2016-07-04 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises Review from the Textbook & Academic Authors Association that awarded the book with the 2017 Most Promising New Textbook Award: “Compared to other books in this subject, we find this one to be very up-to-date and effective at explaining this complicated subject. We certainly would highly recommend it as a text for students and practicing professionals who wish to expand their understanding of modern fluid mechanics.”

Book Direct Numerical Investigations of Dilute Dispersed Flows in Homogeneous Turbulence

Download or read book Direct Numerical Investigations of Dilute Dispersed Flows in Homogeneous Turbulence written by Aditya U. Karnik and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The motivation for the present work is to investigate particle-laden turbulent flows using accurate numerical simulations. In the present work, the carrier phase is modeled using direct numerical simulations (DNS) and the particles are tracked in a Lagrangian sense. Investigations of both one-way and two-way coupled particulate flows in homogeneous isotropic turbulence have been carried out. The phenomenon of interest in one-way coupled simulations is preferential accumulation, which refers to the tendency of heavy particles in isotropic turbulence to collect in regions of high strain and low vorticity. Several measures and mechanisms of accumulation have been reported in the literature often showing conflicting scaling with particle and fluid parameters. In the present study, accumulation has been quantified using several indicators to give a unified picture. The present work addresses the scaling of preferential accumulation with Reynolds number and suggests that while the spacing between particle clusters does exhibit a dependence on Reynolds number, the structure of particle clusters as viewed by individual particles shows little dependence on Reynolds number. The effect of adding a gravitational settling force on the particles has also been explored. While the gravity force tends to homogenize the particle distribution at low Stokes numbers, at high Stokes numbers it tends to arrange the originally random distribution into streaks in the direction of gravity. The ability of the Lorentz force to limit preferential accumulation has been the focus of the next part of the study. Charges are placed on particles to produce an electric field when the particles are inhomogeneously distributed. The electric field and thereby the Lorentz force tend to homogenize the particle distribution. It is interesting to note that the particle distribution attains a stationary state determined by the total amount of charge contained in the domain. It is demonstrated that in the presence of gravity, less amount of charge is required to homogenise particle distribution. Good agreement is observed for simulations of settling charged particles with experimental work. The modification of carrier phase turbulence by particles is studied formono-sized particles. The non-uniform modification of the fluid energy spectrum by particles has been demonstrated. It is seen that there is an increase in energy at high wave numbers for microparticles (St k

Book Turbulence and Diffusion

    Book Details:
  • Author : Oleg G. Bakunin
  • Publisher : Springer Science & Business Media
  • Release : 2008-08-15
  • ISBN : 3540682228
  • Pages : 269 pages

Download or read book Turbulence and Diffusion written by Oleg G. Bakunin and published by Springer Science & Business Media. This book was released on 2008-08-15 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as an introduction to the multidisciplinary ?eld of anomalous diffusion in complex systems such as turbulent plasma, convective rolls, zonal ?ow systems, stochastic magnetic ?elds, etc. In spite of its great importance, turbulent transport has received comparatively little treatment in published mo- graphs. This book attempts a comprehensive description of the scaling approach to turbulent diffusion. From the methodological point of view, the book focuses on the general use of correlation estimates, quasilinear equations, and continuous time random walk - proach. I provide a detailed structure of some derivations when they may be useful for more general purposes. Correlation methods are ?exible tools to obtain tra- port scalings that give priority to the richness of ingredients in a physical pr- lem. The mathematical description developed here is not meant to provide a set of “recipes” for hydrodynamical turbulence or plasma turbulence; rather, it serves to develop the reader’s physical intuition and understanding of the correlation mec- nisms involved.

Book Lecture Notes On Turbulence And Coherent Structures In Fluids  Plasmas And Nonlinear Media

Download or read book Lecture Notes On Turbulence And Coherent Structures In Fluids Plasmas And Nonlinear Media written by Horst Punzmann and published by World Scientific. This book was released on 2006-11-29 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the lectures delivered at the 19th Canberra International Physics Summer School held at the Australian National University in Canberra (Australia) in January 2006.The problem of turbulence and coherent structures is of key importance in many fields of science and engineering. It is an area which is vigorously researched across a diverse range of disciplines such as theoretical physics, oceanography, atmospheric science, magnetically confined plasma, nonlinear optics, etc. Modern studies in turbulence and coherent structures are based on a variety of theoretical concepts, numerical simulation techniques and experimental methods, which cannot be reviewed effectively by a single expert.The main goal of these lecture notes is to introduce state-of-the-art turbulence research in a variety of approaches (theoretical, numerical simulations and experiments) and applications (fluids, plasmas, geophysics, nonlinear optical media) by several experts. A smooth introduction is presented to readers who are not familiar with the field, while reviewing the most recent advances in the area. This collection of lectures will provide a useful review for both postgraduate students and researchers new to the advancements in this field, as well as specialists seeking to expand their knowledge across different areas of turbulence research.

Book The dynamics of finite size settling particles

Download or read book The dynamics of finite size settling particles written by Doychev, Todor and published by KIT Scientific Publishing. This book was released on 2015-01-27 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.

Book An Informal Introduction to Turbulence

Download or read book An Informal Introduction to Turbulence written by A. Tsinober and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N's 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.