EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

Download or read book Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R & D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

Book A Physics Exploratory Experiment on Plasma Liner Formation

Download or read book A Physics Exploratory Experiment on Plasma Liner Formation written by Y. C. Francis Thio and published by BiblioGov. This book was released on 2013-08 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

Book Computational Modeling of Magentically Driven Liner on plasma Fusion Experiments

Download or read book Computational Modeling of Magentically Driven Liner on plasma Fusion Experiments written by and published by . This book was released on 1996 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetized Target Fusion (MTF) is an approach to controlled fusion which potentially avoids the difficulties of the traditional magnetic and inertial confinement approaches. It appears possible to investigate the critical issues for MTF at low cost, relative to traditional fusion programs, utilizing pulsed power drivers much less expensive than ICF drivers, and plasma configurations much less expensive than those needed for full magnetic confinement. Computational and experimental research into MTF is proceeding at Los Alamos, VNIIEF, and other laboratories.

Book Modeling of Present and Proposed Magnetized Target Fusion Experiments

Download or read book Modeling of Present and Proposed Magnetized Target Fusion Experiments written by and published by . This book was released on 1998 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the concept known as Magnetized Target Fusion (MTF) in the United States and Magnitnoye Obzhatiye (MAGO) in Russia, a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions. Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion. Hence ''liner-on-plasma'' compressions, magnetically driven using relatively inexpensive electrical pulsed power, may be practical. One candidate target plasma known as ''MAGO'' was originated in Russia and is now being jointly developed by the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Los Alamos National Laboratory (LANL). Other possible target plasmas now under investigation at LANL include wall-supported deuterium-fiber-initiated Z-pinches and compact toroids. Detailed computational modeling is being done of such target plasmas. In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental and computational investigation of liner implosions suitable for MTF is continuing. Results will be presented.

Book MHD Modeling of Magnetized Target Fusion Experiments

Download or read book MHD Modeling of Magnetized Target Fusion Experiments written by and published by . This book was released on 2001 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetized Target Fusion (MTF) is an alternate approach to controlled fusion in which a dense (0(1017-'8 cm-')), preheated (O(200 ev)), and magnetized (0(100 kG)) target plasma is hydrodynamically compressed by an imploding liner. If electron thermal conduction losses are magnetically suppressed, relatively slow O(1 cm/microsecond) 'liner-on-plasma' compressions may be practical, using liners driven by inexpensive electrical pulsed power. Target plasmas need to remain relatively free of potentially cooling contaminants during formation and compression. Magnetohydrodynamic (MHD) calculations including detailed effects of radiation, heat conduction, and resistive field diffusion have been used to model separate target plasma (Russian MAGO, Field Reversed Configuration at Los Alamos National Laboratory) and liner implosion experiments (without plasma fill), such as recently performed at the Air Force Research Laboratory (Albuquerque). Using several different codes, proposed experiments in which such liners are used to compress such target plasmas are now being modeled in one and two dimensions. In this way, it is possible to begin to investigate important issues for the design of such proposed liner-on-plasma fusion experiments. The competing processes of implosion, heating, mixing, and cooling will determine the potential for such MTF experiments to achieve fusion conditions.

Book Investigation of the Compression of Magnetized Plasma and Magnetic Flux

Download or read book Investigation of the Compression of Magnetized Plasma and Magnetic Flux written by Dimitry Mikitchuk and published by Springer. This book was released on 2019-06-28 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.

Book Computational and Experimental Investigation of Magnetized Target Fusion

Download or read book Computational and Experimental Investigation of Magnetized Target Fusion written by and published by . This book was released on 1996 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Magnetized Target Fusion (MTF), a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions. Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion (ICF). Bigger targets and much lower initial target densities than in ICF can be used, reducing radiative energy losses. Therefore, ''liner-on-plasma'' compressions, driven by relatively inexpensive electrical pulsed power, may be practical. Potential MTF target plasmas must meet minimum temperature, density, and magnetic field starting conditions, and must remain relatively free of high-Z radiation-cooling-enhancing contaminants. At Los Alamos National Laboratory, computational and experimental research is being pursued into MTF target plasmas, such as deuterium-fiber-initiated Z-pinches, and the Russian-originated MAGO plasma. In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental investigation of such heavy liner implosions has begun. The status of the research will be presented.

Book An Assessment of the Prospects for Inertial Fusion Energy

Download or read book An Assessment of the Prospects for Inertial Fusion Energy written by National Research Council and published by National Academies Press. This book was released on 2013-07-05 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potential for using fusion energy to produce commercial electric power was first explored in the 1950s. Harnessing fusion energy offers the prospect of a nearly carbon-free energy source with a virtually unlimited supply of fuel. Unlike nuclear fission plants, appropriately designed fusion power plants would not produce the large amounts of high-level nuclear waste that requires long-term disposal. Due to these prospects, many nations have initiated research and development (R&D) programs aimed at developing fusion as an energy source. Two R&D approaches are being explored: magnetic fusion energy (MFE) and inertial fusion energy (IFE). An Assessment of the Prospects for Inertial Fusion Energy describes and assesses the current status of IFE research in the United States; compares the various technical approaches to IFE; and identifies the scientific and engineering challenges associated with developing inertial confinement fusion (ICF) in particular as an energy source. It also provides guidance on an R&D roadmap at the conceptual level for a national program focusing on the design and construction of an inertial fusion energy demonstration plant.

Book Magnetized Target Fusion Collaboration  Final Report

Download or read book Magnetized Target Fusion Collaboration Final Report written by and published by . This book was released on 2012 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (̃a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ̃400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

Book Computational Modeling of Pulsed power driven Magnetized Target Fusion Experiments

Download or read book Computational Modeling of Pulsed power driven Magnetized Target Fusion Experiments written by and published by . This book was released on 1995 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct magnetic drive using electrical pulsed power has been considered impractically slow for traditional inertial confinement implosion of fusion targets. However, if the target contains a preheated, magnetized plasma, magnetothermal insulation may allow the near-adiabatic compression of such a target to fusion conditions on a much slower time scale. 100-MJ-class explosive flux compression generators with implosion kinetic energies far beyond those available with conventional fusion drivers, are an inexpensive means to investigate such magnetized target fusion (MTF) systems. One means of obtaining the preheated and magnetized plasma required for an MTF system is the recently reported {open_quotes}MAGO{close_quotes} concept. MAGO is a unique, explosive-pulsed-power driven discharge in two cylindrical chambers joined by an annular nozzle. Joint Russian-American MAGO experiments have reported D-T neutron yields in excess of 1013 from this plasma preparation stage alone, without going on to the proposed separately driven NM implosion of the main plasma chamber. Two-dimensional MED computational modeling of MAGO discharges shows good agreement to experiment. The calculations suggest that after the observed neutron pulse, a diffuse Z-pinch plasma with temperature in excess of 100 eV is created, which may be suitable for subsequent MTF implosion, in a heavy liner magnetically driven by explosive pulsed power. Other MTF concepts, such as fiber-initiated Z-pinch target plasmas, are also being computationally and theoretically evaluated. The status of our modeling efforts will be reported.

Book Magnetized Target Fusion With Centimeter Size Liner

Download or read book Magnetized Target Fusion With Centimeter Size Liner written by D. Ryutov and published by . This book was released on 2005 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author concentrates on the version of magnetized target fusion (MTF) that involves 3D implosions of a wall-confined plasma with the density in the compressed state {approx} 10{sup 21}-10{sup 22} cm{sup -3}. Possible plasma configurations suitable for this approach are identified. The main physics issues are outlined (equilibrium, stability, transport, plasma-liner interaction, etc). Specific parameters of the experiment reaching the plasma Q{approx}1 are presented (Q is the ratio of the fusion yield to the energy delivered to the plasma). It is emphasized that there exists a synergy between the physics and technology of MTF and dense Z-pinches (DZP). Specific areas include the particle and heat transport in a high-beta plasma, plasma-liner interaction, liner stability, stand-off problem for the power source, reaching a rep-rate regime in the energy-producing reactor, etc. Possible use of existing pulsed-power facilities for addressing these issues is discussed.

Book Particle Simulation Study of Driven Magnetic Reconnection in a Collisionless Plasma

Download or read book Particle Simulation Study of Driven Magnetic Reconnection in a Collisionless Plasma written by Ritoku Horiuchi and published by . This book was released on 1994 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plasma Simulations by Example

Download or read book Plasma Simulations by Example written by Lubos Brieda and published by CRC Press. This book was released on 2019-12-13 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of plasmas is crucial in improving our understanding of the universe, and they are being increasingly utilised in key technologies such as spacecraft thrusters, plasma medicine, and fusion energy. Providing readers with an easy to follow set of examples that clearly illustrate how simulation codes are written, this book guides readers through how to develop C++ computer codes for simulating plasmas primarily with the kinetic Particle in Cell (PIC) method. This text will be invaluable to advanced undergraduates and graduate students in physics and engineering looking to learn how to put the theory to the test. Features: Provides a step-by-step introduction to plasma simulations with easy to follow examples Discusses the electrostatic and electromagnetic Particle in Cell (PIC) method on structured and unstructured meshes, magnetohydrodynamics (MHD), and Vlasov solvers Covered topics include Direct Simulation Monte Carlo (DSMC) collisions, surface interactions, axisymmetry, and parallelization strategies. Lubos Brieda has over 15 years of experience developing plasma and gas simulation codes for electric propulsion, contamination transport, and plasma-surface interactions. As part of his master’s research work, he developed a 3D ES-PIC electric propulsion plume code, Draco, which is to this date utilized by government labs and private aerospace firms to study plasma thruster plumes. His Ph.D, obtained in 2012 from George Washington University, USA, focused on a multi-scale model for Hall thrusters utilizing fluid-kinetic hybrid PIC codes. He has since then been involved in numerous projects involving development and the use of plasma simulation tools. Since 2014 he has been teaching online courses on plasma simulations through his website: particleincell.com.

Book Final Report on the Magnetized Target Fusion Collaboration

Download or read book Final Report on the Magnetized Target Fusion Collaboration written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T & ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

Book Computational Simulation of High Energy Density Plasmas

Download or read book Computational Simulation of High Energy Density Plasmas written by and published by . This book was released on 2009 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmas with embedded high magnetic fields are less subject to thermal conduction losses and can therefore reach higher temperatures under compression. This effect offers a path to generation of neutrons by thermal collisions known as magnetized target fusion (MTF). Now also referred to as magneto-inertial fusion (MlF). Since MTF allows the use of slower drivers for compress ion, it should lower the cost of achieving intense neutron pulses. NumerEx's effort under this Task Order has focused on two different concepts for MTF. The first approach is the generation, stagnation, and compression of ultrahigh speed plasma (UHP) flow; the second is formation, translation, capture, and compression of a field-reversed magnetized plasma configuration (FRC). In both concepts, the ultimate compression is by an imploding liner driven by a fast capacitor bank. Here we will describe our achievements in simulating those two concepts. The first section will focus on simulations of the UHP target liner compression, and the second, on simulations of FRC compression.

Book Fusion power by magnetic confinement  program plan

Download or read book Fusion power by magnetic confinement program plan written by United States. Energy Research and Development Administration. Division of Magnetic Fusion Energy and published by . This book was released on 1976 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Magnetic Fusion Technology

Download or read book Magnetic Fusion Technology written by Thomas J. Dolan and published by Springer Science & Business Media. This book was released on 2014-02-10 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.