EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study of Groundwater Flow Through Porous Media Using UNSAT2

Download or read book Study of Groundwater Flow Through Porous Media Using UNSAT2 written by Debashish Shome and published by . This book was released on 1994 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanics of Groundwater in Porous Media

Download or read book Mechanics of Groundwater in Porous Media written by Muhammad I. Haque and published by CRC Press. This book was released on 2014-07-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a Balance between the Mathematical and Physical Aspects and the Engineering Applications Written for engineering and science students, Mechanics of Groundwater in Porous Media explains groundwater from both a mathematical and qualitative standpoint. The book builds up the theory of groundwater flow starting from basic physics and geometric intuition, and on to applied practice through real-world engineering problems. It includes graphical illustrations as well as solved illustrative problems throughout the text. Considers the Steady-State Motion of Groundwater The book starts off by introducing the overall picture of groundwater, its relationship with the hydrological cycle, and other terminology used in the mechanics of groundwater flow though porous means. It presents a synopsis of basic definitions, concepts, and the fundamental principles of fluid mechanics and soil mechanics, which are necessary prerequisites for an adequate understanding of the book’s core material. The engineering applications are deducted from geometric and physical reasoning, with a minimum use of mathematical abstraction. Mechanics of Groundwater in Porous Media is written primarily to serve as a textbook for senior undergraduate and upper-level graduate students in civil and environmental engineering, environmental science, hydrogeology, and geology, as well as a resource for practicing engineers.

Book Flow And Transport In Porous Media   Proceedings Of The Summer School

Download or read book Flow And Transport In Porous Media Proceedings Of The Summer School written by Brian Howard Gilding and published by World Scientific. This book was released on 1992-09-16 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Mathematical Modelling of Saturated and Unsaturated Groundwater Flow (B H Gilding)Applications of the Homogenization Method to Flow and Transport in Porous Media (U Hornung)Finite-Element-Approximation of Solute Transport in Porous Media with General Adsorption Processes (P Knabner)Free Boundary Problems in Fresh-Salt Goundwater Flow (C J van Duijn) Readership: Applied mathematicians and engineers. Keywords:Porous Media Equation;Diffusion Equation;Transport Equation;Infiltration Equation;Partial Differential Equation(PDE);Degenerate Parabolic Equation;Nonlinear PDE;Multiphase Flow in Porous Media;Nonlinear Diffusion;Reactive Solutes;Adsorption;Fresh and Salt Groundwater Flow;Homogenisation;Nonlinear Partial Differential Equations

Book Modeling Groundwater Flow and Pollution

Download or read book Modeling Groundwater Flow and Pollution written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Groundwater constitutes an important component of many water resource systems, supplying water for domestic use, for industry, and for agriculture. Management of a groundwater system, an aquifer, or a system of aquifers, means making such decisions as to the total quantity of water to be withdrawn annually, the location of wells for pumping and for artificial recharge and their rates, and control conditions at aquifer boundaries. Not less important are decisions related to groundwater qUality. In fact, the quantity and quality problems cannot be separated. In many parts of the world, with the increased withdrawal of ground water, often beyond permissible limits, the quality of groundwater has been continuously deteriorating, causing much concern to both suppliers and users. In recent years, in addition to general groundwater quality aspects, public attention has been focused on groundwater contamination by hazardous industrial wastes, by leachate from landfills, by oil spills, and by agricultural activities such as the use of fertilizers, pesticides, and herbicides, and by radioactive waste in repositories located in deep geological formations, to mention some of the most acute contamination sources. In all these cases, management means making decisions to achieve goals without violating specified constraints. In order to enable the planner, or the decision maker, to compare alternative modes of action and to ensure that the constraints are not violated, a tool is needed that will provide information about the response of the system (the aquifer) to various alternatives.

Book Natural Groundwater Flow

Download or read book Natural Groundwater Flow written by Wouter Zijl and published by CRC Press. This book was released on 1993-02-03 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Groundwater Flow is an important volume focused on providing a complete description of groundwater flow velocity field and the velocity oriented approach for conducting numerical simulations and other applications. The book presents background information regarding the causes leading to spatial variations of the water table, related concepts of phreatic and specific storage, artificial flow, and flow driven by differences in groundwater density. Block-scale permeability is discussed in detail, and numerical applications using the Galerkin finite element method and pre-modeling techniques for obtaining data required for numerical modeling are examined. The book also presents never-before-published information regarding the theoretical justification and elucidation of hydrological systems analysis to analyze the effects of different spatio-temporal scales. Natural Groundwater Flow is an important reference for environmental physicists, hydrogeologists, civil engineers, mathematical geologists, and petroleum reservoir engineers.

Book On Some Problems in the Simulation of Flow and Transport Through Porous Media

Download or read book On Some Problems in the Simulation of Flow and Transport Through Porous Media written by Sunil George Thomas and published by . This book was released on 2009 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamic solution of multiphase flow through porous media is of special interest to several fields of science and engineering, such as petroleum, geology and geophysics, bio-medical, civil and environmental, chemical engineering and many other disciplines. A natural application is the modeling of the flow of two immiscible fluids (phases) in a reservoir. Others, that are broadly based and considered in this work include the hydrodynamic dispersion (as in reactive transport) of a solute or tracer chemical through a fluid phase. Reservoir properties like permeability and porosity greatly influence the flow of these phases. Often, these vary across several orders of magnitude and can be discontinuous functions. Furthermore, they are generally not known to a desired level of accuracy or detail and special inverse problems need to be solved in order to obtain their estimates. Based on the physics dominating a given sub-region of the porous medium, numerical solutions to such flow problems may require different discretization schemes or different governing equations in adjacent regions. The need to couple solutions to such schemes gives rise to challenging domain decomposition problems. Finally, on an application level, present day environment concerns have resulted in a widespread increase in CO2 capture and storage experiments across the globe. This presents a huge modeling challenge for the future. This research work is divided into sections that aim to study various inter-connected problems that are of significance in sub-surface porous media applications. The first section studies an application of mortar (as well as nonmortar, i.e., enhanced velocity) mixed finite element methods (MMFEM and EV-MFEM) to problems in porous media flow. The mortar spaces are first used to develop a multiscale approach for parabolic problems in porous media applications. The implementation of the mortar mixed method is presented for two-phase immiscible flow and some a priori error estimates are then derived for the case of slightly compressible single-phase Darcy flow. Following this, the problem of modeling flow coupled to reactive transport is studied. Applications of such problems include modeling bio-remediation of oil spills and other subsurface hazardous wastes, angiogenesis in the transition of tumors from a dormant to a malignant state, contaminant transport in groundwater flow and acid injection around well bores to increase the permeability of the surrounding rock. Several numerical results are presented that demonstrate the efficiency of the method when compared to traditional approaches. The section following this examines (non-mortar) enhanced velocity finite element methods for solving multiphase flow coupled to species transport on non-matching multiblock grids. The results from this section indicate that this is the recommended method of choice for such problems. Next, a mortar finite element method is formulated and implemented that extends the scope of the classical mortar mixed finite element method developed by Arbogast et al (12) for elliptic problems and Girault et al (62) for coupling different numerical discretization schemes. Some significant areas of application include the coupling of pore-scale network models with the classical continuum models for steady single-phase Darcy flow as well as the coupling of different numerical methods such as discontinuous Galerkin and mixed finite element methods in different sub-domains for the case of single phase flow (21, 109). These hold promise for applications where a high level of detail and accuracy is desired in one part of the domain (often associated with very small length scales as in pore-scale network models) and a much lower level of detail at other parts of the domain (at much larger length scales). Examples include modeling of the flow around well bores or through faulted reservoirs. The next section presents a parallel stochastic approximation method (68, 76) applied to inverse modeling and gives several promising results that address the problem of uncertainty associated with the parameters governing multiphase flow partial differential equations. For example, medium properties such as absolute permeability and porosity greatly influence the flow behavior, but are rarely known to even a reasonable level of accuracy and are very often upscaled to large areas or volumes based on seismic measurements at discrete points. The results in this section show that by using a few measurements of the primary unknowns in multiphase flow such as fluid pressures and concentrations as well as well-log data, one can define an objective function of the medium properties to be determined, which is then minimized to determine the properties using (as in this case) a stochastic analog of Newton's method. The last section is devoted to a significant and current application area. It presents a parallel and efficient iteratively coupled implicit pressure, explicit concentration formulation (IMPEC) (52-54) for non-isothermal compositional flow problems. The goal is to perform predictive modeling simulations for CO2 sequestration experiments. While the sections presented in this work cover a broad range of topics they are actually tied to each other and serve to achieve the unifying, ultimate goal of developing a complete and robust reservoir simulator. The major results of this work, particularly in the application of MMFEM and EV-MFEM to multiphysics couplings of multiphase flow and transport as well as in the modeling of EOS non-isothermal compositional flow applied to CO2 sequestration, suggest that multiblock/multimodel methods applied in a robust parallel computational framework is invaluable when attempting to solve problems as described in Chapter 7. As an example, one may consider a closed loop control system for managing oil production or CO2 sequestration experiments in huge formations (the "instrumented oil field"). Most of the computationally costly activity occurs around a few wells. Thus one has to be able to seamlessly connect the above components while running many forward simulations on parallel clusters in a multiblock and multimodel setting where most domains employ an isothermal single-phase flow model except a few around well bores that employ, say, a non-isothermal compositional model. Simultaneously, cheap and efficient stochastic methods as in Chapter 8, may be used to generate history matches of well and/or sensor-measured solution data, to arrive at better estimates of the medium properties on the fly. This is obviously beyond the scope of the current work but represents the over-arching goal of this research.

Book Flow and Transformations in Porous Media

Download or read book Flow and Transformations in Porous Media written by Renaud Toussaint and published by Frontiers Media SA. This book was released on 2017-02-07 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid flow in transforming porous rocks, fracture networks, and granular media is a very active interdisciplinary research subject in Physics, Earth Sciences, and Engineering. Examples of natural and engineered processes include hydrocarbon recovery, carbon dioxide geo-sequestration, soil drying and wetting, pollution remediation, soil liquefaction, landslides, dynamics of wet or dry granular media, dynamics of faulting or friction, volcanic eruptions, gas venting in sediments, karst development and speleogenesis, ore deposit development, and radioactive waste disposal. Hydrodynamic flow instabilities and pore scale disorder typically result in complex flow patterning. In transforming media, additional mechanisms come into play: compaction, de-compaction, erosion, segregation, and fracturing lead to changes in permeability over time. Dissolution, precipitation, and chemical reactions between solutes and solids may gradually alter the composition and structure of the solid matrix, either creating or destroying permeable paths for fluid flow. A complex, dynamic feedback thus arises where, on the one hand, the fluid flow affects the characteristics of the porous medium, and on the other hand the changing medium influences the fluid flow. This Research Topic Ebook presents current research illustrating the depth and breadth of ongoing work in the field of flow and transformation in porous media through 15 papers by 72 authors from around the world. The body of work highlights the challenges posed by the vast range of length- and time-scales over which subsurface flow processes occur. Importantly, phenomena from each scale contribute to the larger-scale behavior. The flow of oil and gas in reservoirs, and the flow of groundwater on catchment scale is sensitively linked to pore scale processes and material heterogeneity down to the micrometer scale. The geological features of the same reservoirs and catchments evolved over millions of years, sometimes as a consequence of cracking and fracture growth occurring on the time scale of microseconds. The research presented by the authors of this Research Topic represents a step toward bridging the separation of scales as well as the separation of scientific disciplines so that a more unified picture of flow and transformation in porous media can start to emerge.

Book Analysis of Groundwater Flow

Download or read book Analysis of Groundwater Flow written by A. J. Raudkivi and published by John Wiley & Sons. This book was released on 1976 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Groundwater Flow and Solute Transport  Pushing the Hidden Boundary

Download or read book Advances in Groundwater Flow and Solute Transport Pushing the Hidden Boundary written by Hongbin Zhan and published by MDPI. This book was released on 2019-10-01 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the study of groundwater flow and solute transport has advanced into new territories that are beyond conventional theories, such as Darcy’s law and Fick’s law. The studied media have changed from permeable porous and fractured ones to much less permeable ones, such as clay and shale. The studied pore sizes have also changed from millimetres to micro-meters or even nano-meters. The objective of this Special Issue is to report recent advances in groundwater flow and solute transport that push the knowledge boundary into new territories which include, but are not limited to, flow and transport in sloping aquifer/hillslopes, coupled unsaturated and saturated flow, coupled aquifer-vertical/horizontal/slant well flow, interaction of aquifer with connected and disconnected rivers, non-Darcian flow, anomalous transport beyond the Fickian scheme, and flow and transport in extremely small pore spaces such as shale and tight sandstones. Contributions focusing on innovative experimental, numerical, and analytical methods for understanding unconventional problems, such as the above-listed ones, are encouraged, and contributions addressing flow and transport at interfaces of different media and crossing multiple temporal and spatial scales are of great value

Book Flow Through Porous Media

Download or read book Flow Through Porous Media written by George Francis Pinder and published by . This book was released on 1983 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Groundwater Flow and Quality Modelling

Download or read book Groundwater Flow and Quality Modelling written by E. Custodio and published by Springer Science & Business Media. This book was released on 1988-02-29 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop on Advances in Analytical and Numerical Groundwater Flow and Quality Modelling, Lisbon, Portugal, June 2-6, 1987

Book Quasi three dimensional Analysis of Groundwater Flow and Dissolved Multicomponent Solute Transport in Saturated Porous Media

Download or read book Quasi three dimensional Analysis of Groundwater Flow and Dissolved Multicomponent Solute Transport in Saturated Porous Media written by Yi Tang and published by . This book was released on 1991 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two  and Three Dimensional Flow of Groundwater

Download or read book Two and Three Dimensional Flow of Groundwater written by Florimond De Smedt and published by CRC Press. This book was released on 2017-11-06 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a practical guide to groundwater flow theory intended to serve students and practitioners by bridging the gap between basic hydrogeology and groundwater modeling. It synthesizes the mathematics of groundwater flow and provides information in an easily-accessible format for practicing groundwater professionals, consultants, and students that intend to become skillful and competent groundwater flow modelers.

Book Flow and Transport in Porous Formations

Download or read book Flow and Transport in Porous Formations written by Gedeon Dagan and published by . This book was released on 1989 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gravitational Systems of Groundwater Flow

Download or read book Gravitational Systems of Groundwater Flow written by József Tóth and published by Cambridge University Press. This book was released on 2009-04-16 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough overview of gravity-driven groundwater flow, illustrated with practical examples, from one of the founding fathers of the field.