EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Study of Compression Ignition of Fuel Sprays in a Controlled Environment

Download or read book Study of Compression Ignition of Fuel Sprays in a Controlled Environment written by Dale Charles Brinkmann and published by . This book was released on 1962 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Assessment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Book Low temperature Combustion and Autoignition

Download or read book Low temperature Combustion and Autoignition written by M.J. Pilling and published by Elsevier. This book was released on 1997-11-27 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion has played a central role in the development of our civilization which it maintains today as its predominant source of energy. The aim of this book is to provide an understanding of both fundamental and applied aspects of low-temperature combustion chemistry and autoignition. The topic is rooted in classical observational science and has grown, through an increasing understanding of the linkage of the phenomenology to coupled chemical reactions, to quite profound advances in the chemical kinetics of both complex and elementary reactions. The driving force has been both the intrinsic interest of an old and intriguing phenomenon and the centrality of its applications to our economic prosperity. The volume provides a coherent view of the subject while, at the same time, each chapter is self-contained.

Book Gasoline Compression Ignition Technology

Download or read book Gasoline Compression Ignition Technology written by Gautam Kalghatgi and published by Springer Nature. This book was released on 2022-01-17 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.

Book Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

Download or read book Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification written by Benjamin Matthew Wolk and published by . This book was released on 2014 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

Book Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction

Download or read book Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction written by Akhilendra Pratap Singh and published by Springer Nature. This book was released on 2021-06-14 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.

Book Spray and Combustion Studies of High Reactivity Gasoline in Comparison to Diesel Under Advanced Compression Ignition Engine Conditions

Download or read book Spray and Combustion Studies of High Reactivity Gasoline in Comparison to Diesel Under Advanced Compression Ignition Engine Conditions written by and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : Gasoline compression ignition (GCI) technology has demonstrated great potentials in improving fuel economy and reducing engine-out NOx and particulate matter emissions. Development and application of the GCI technology on multi-cylinder engines require both fundamental understandings of the gasoline spray combustion characteristics and accurate numerical tools. Due to the large differences in the thermo-physical and the chemical properties between gasoline and diesel range fuels, differences in the spray combustion characteristics between gasoline and diesel is expected. Reports on the gasoline spray combustion characteristics under conditions relevant to medium to heavy-duty engines are scarce and this dissertation aims to fill in this knowledge gap. Experimental work were performed in a constant volume combustion vessel. Non-reacting sprays under low and high ambient charge gas temperatures and reacting sprays were performed using a high reactivity gasoline (research octane number 60) and ultra-low sulfur diesel. The experimental work were designed to isolate the effect of several important fuel properties on spray and combustion. The experimentally investigated spray combustion characteristics include spray dispersion, vapor penetration, liquid penetration, ignition, flame lift-off, and natural luminosity. These experiments provided evidence behind the lower particulate matter emissions benefit of gasoline. A transient spray cone angle correlation was developed based on the experimental measurements. The correlation was developed to improve the description of fuel-air mixing in computational fluid dynamic (CFD) simulations. The correlation was integrated with CFD simulations and the benefits of using a transient spray cone angle profile were demonstrated. Reacting spray CFD simulations were performed and validated extensively against the experimental spray characteristics on ignition, flame lift-off, soot natural luminosity, and external published local soot concentration measurements. The CFD simulations provided additional understanding of the soot emission processes to complement experimental measurements.

Book Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Download or read book Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance written by Richard Folkson and published by Woodhead Publishing. This book was released on 2022-07-27 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. Provides a fully updated reference with significant technological advances and developments in the sector Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry

Book Characterization of the Effects of Ducted Fuel Injection in a Compression Ignition Engine

Download or read book Characterization of the Effects of Ducted Fuel Injection in a Compression Ignition Engine written by Christopher William Nilsen and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ducted fuel injection (DFI) has been proposed as a strategy to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection mixing-controlled compression-ignition engine. The concept involves injecting each fuel spray through a small tube within the combustion chamber to facilitate the creation of a leaner mixture in the autoignition zone, relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This dissertation investigates the effects of ducted fuel injection on engine-out emissions and efficiency with two-orifice and four-orifice injector tips across a wide range of conditions. A numerical study contributes to the understanding of the fluid flow effects of DFI. The experiments in chapter two use a two-orifice fuel injector to test two duct configurations relative to conventional diesel combustion. The result is that DFI is confirmed to be effective at curtailing engine-out soot emissions. It also breaks the tradeoff between emissions of soot and nitrogen oxides (NO[subscript x]) by simultaneously attenuating soot and NO[subscript x] with increasing dilution. The third chapter expands on the second by comparing ducted fuel injection to conventional diesel combustion over a wide range of operating conditions and at higher loads (up to 8.7 bar gross indicated mean effective pressure) with a four-orifice fuel injector. This chapter is achieved through sweeps of intake-oxygen mole-fraction, injection duration, intake pressure, start of combustion timing, fuel-injection pressure, and intake temperature. Ducted fuel injection is shown to curtail engine-out soot emissions at all tested conditions. Under certain conditions, ducted fuel injection can attenuate engine-out soot by over a factor of 100. In addition to producing significantly lower engine-out soot emissions, ducted fuel injection enables the engine to be operated at low-NO[subscript x] conditions that are not feasible with conventional diesel combustion due to high soot emissions. The fourth chapter explores 1.1 bar IMEP[subscript g] (low load) conditions and 10 bar IMEP[subscript g] (higher-load) conditions with the same four-orifice fuel injector as in chapter three. DFI and CDC are directly compared at each operating point in the study. At the idle condition, the intake dilution was swept to elucidate the soot and NO[subscript x] performance of DFI in this new load range. This expands the range of conditions over which DFI has been shown to attenuate soot formation. It also shows that DFI enables low-NO[subscript x], low-load operation that is not achievable with CDC due to excessive soot formation at high dilution levels. The fifth chapter uses a numerical model to develop the understanding of the fluid flow effects of DFI. This enabled studies of entrainment and mixing that would have been much more challenging to do in an experiment. This showed that DFI enhances charge gas entrainment before the duct and blocks entrainment inside of the duct. Mixing is enhanced by the duct, which resulted in lower peak equivalence ratios at the end of the duct.

Book Diesel Combustion and Emissions

Download or read book Diesel Combustion and Emissions written by Society of Automotive Engineers and published by . This book was released on 1981 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ignition Delay at Various High Pressures  An Experimental Study

Download or read book Ignition Delay at Various High Pressures An Experimental Study written by Ritu Gaur and published by GRIN Verlag. This book was released on 2019-11-13 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research Paper (postgraduate) from the year 2019 in the subject Engineering - Chemical Engineering, , course: M.TECH, language: English, abstract: This work is an experimental study for the measurement of ignition delay characteristics of burning fuel sprays in cylindrical combustion chambers. It is carried out on hot air and high pressure. The objective of the study is to investigation the effect of hot air temperature and a well as high pressure on ignition delay of diesel fuel sprays. The effect of blending of n-Pentane with pure diesel was investigated. An experimental set up was design for this purpose with the emphasis on optical method for measurement of ignition delay at various pressures. The results presented here show that ignition delay of diesel fuel spray decreases with increase in the temperature and pressure of hot air. Results also show the effect of methyl group being more dominant at low ignition temperatures and that of alkyl group being more dominant at higher temperature. Blending of n-pentane with diesel fuel, increase its ignition delay at low ignition temperatures. However, as the concentration of blending fuel was increased beyond 30%, the ignition temperature increase. Ignition temperature for 40% pentane blends is much higher that the pure diesel.

Book Exploration of Combustion Strategies for High efficiency  Extreme compression Engines

Download or read book Exploration of Combustion Strategies for High efficiency Extreme compression Engines written by Mr. Matthew Neil Svrcek and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing the compression ratio of an internal combustion engine to 100:1 or greater could potentially enable efficiencies greater than 60%. Understanding and managing the combustion process is a critical component to achieving this in practice. This thesis explores strategies for combustion at extreme compression ratios. First, the setup of a free-piston device capable of operating at 100:1 compression ratio is described. Initial performance results are reported for air-only experiments. Diesel-style combustion was the first approach taken, as it provides facile ignition phasing. Results are reported from initial lean Diesel combustion experiments at compression ratios ranging from 30 to 100:1. Indicated efficiency peaked at 60% for these experiments. To further understand Diesel-style combustion at extreme compression ratios, a study of Diesel sprays in the extreme compression apparatus was performed. The setup of a combined schlieren and direct luminosity imaging system with full-bore optical access is described. Spray penetration, dispersion, liquid length, and ignition delay are reported for combusting and non-combusting sprays. Compression ratios for these experiments ranged from 30 to 100:1. Spray behavior followed expected trends as a function of primary variables such as gas density. However, rapidly varying gas density from the free-piston profile impacts the spray penetration. Furthermore, at the highest compression ratios in-cylinder fluid motion dramatically affects the spray behavior, enabled by the low ratio of fuel to gas density. Systems added to the extreme compression apparatus to measure gaseous and particulate emissions are described. Emissions measurements from Diesel-style combustion of isooctane at 35:1 compression ratio are reported, to provide a reference case at conditions similar to conventional engines. Emissions were similar to those from production Diesel engines, with the exception that soot, HC, and CO increased more rapidly with equivalence ratio in the present study. Results from experiments with Diesel combustion up to 100:1 compression ratio are also reported. The combustion efficiency was 99% up to 100:1 compression ratio, and HC, CO and soot emissions were low. Emissions of NOx were 5 times higher at 100:1 than at 35:1, and would require aftertreatment. Stoichiometric, premixed-charge combustion enables the use of a three-way catalyst and produces low soot levels. Using this approach at extreme compression ratios requires delaying autoignition until the minimum volume is reached. Options for control of autoignition are discussed, and gas cooling is identified as the most effective. Pre-refrigeration, intercooling, and evaporation of a liquid are modeled and shown to effectively achieve the desired ignition timing at 100:1 compression ratio, without impacting the overall engine efficiency. Experimental results are reported for premixed methane-air combustion with intercooling control of autoignition, for 0.96 to 1.04 equivalence ratio and 35 to 90:1 effective compression ratio. The gas cooling requirement for autoignition control was higher than predicted by the models, but still within practical reach. The indicated efficiency peaked at 57%. Emissions levels from these experiments were similar to stoichiometric spark-ignited natural gas engines reported in the literature, and indicate that a three-way catalyst could be successfully used even at extreme compression ratios. Results are also reported for water injection control of autoignition. Autoignition was successfully controlled up to 60:1 effective compression ratio, but the mass of water required was an order of magnitude higher than predicted. This is shown to result from practical limitations of the current water injector setup.

Book The Internal combustion Engine in Theory and Practice  Combustion  fuels  materials  design  Bibliography  p  637 761

Download or read book The Internal combustion Engine in Theory and Practice Combustion fuels materials design Bibliography p 637 761 written by Charles Fayette Taylor and published by . This book was released on 1968 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diesel Emissions and Their Control  2nd Edition

Download or read book Diesel Emissions and Their Control 2nd Edition written by W. Addy Majewski and published by SAE International. This book was released on 2023-12-20 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers, applied scientists, students, and individuals working to reduceemissions and advance diesel engine technology will find the secondedition of Diesel Emissions and Their Control to be an indispensablereference. Whether readers are at the outset of their learning journey orseeking to deepen their expertise, this comprehensive reference bookcaters to a wide audience.In this substantial update to the 2006 classic, the authors have expandedthe coverage of the latest emission technologies. With the industryevolving rapidly, the book ensures that readers are well-informed aboutthe most recent advances in commercial diesel engines, providing acompetitive edge in their respective fields. The second edition has alsostreamlined the content to focus on the most promising technologies.This book is rooted in the wealth of information available on DieselNet.com, where the “Technology Guide” papers offer in-depth insights. Eachchapter includes links to relevant online materials, granting readers accessto even more expertise and knowledge.The second edition is organized into six parts, providing a structuredjourney through every aspect of diesel engines and emissions control: Part I: A foundational exploration of the diesel engine, combustion, andessential subsystems. Part II: An in-depth look at emission characterization, health andenvironmental impacts, testing methods, and global regulations. Part III: A comprehensive overview of diesel fuels, covering petroleumdiesel, alternative fuels, and engine lubricants. Part IV: An exploration of engine efficiency and emission controltechnologies, from exhaust gas recirculation to engine control. Part V: The latest developments in diesel exhaust aftertreatment,encompassing catalyst technologies and particulate filters. Part VI: A historical journey through the evolution of dieselengine technology, with a focus on heavy-duty engines in the NorthAmerican market. (ISBN 9781468605693, ISBN 9781468605709, ISBN 9781468605716, DOI: 10.4271/9781468605709)

Book A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions

Download or read book A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions written by and published by . This book was released on 2016 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasoline has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.