EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Major Applications of Carbon Nanotube Field Effect Transistors  CNTFET

Download or read book Major Applications of Carbon Nanotube Field Effect Transistors CNTFET written by Raj, Balwinder and published by IGI Global. This book was released on 2019-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.

Book Carbon Nanotube Electronics

Download or read book Carbon Nanotube Electronics written by Ali Javey and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.

Book Advanced Nanoelectronics

Download or read book Advanced Nanoelectronics written by Razali Ismail and published by CRC Press. This book was released on 2018-09-03 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Book Carbon Nanotube and Graphene Device Physics

Download or read book Carbon Nanotube and Graphene Device Physics written by H.-S. Philip Wong and published by Cambridge University Press. This book was released on 2011 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first introductory textbook to explain the properties and performance of practical nanotube devices and related applications.

Book Nanoscale Transistors

Download or read book Nanoscale Transistors written by Mark Lundstrom and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: To push MOSFETs to their scaling limits and to explore devices that may complement or even replace them at molecular scale, a clear understanding of device physics at nanometer scale is necessary. Nanoscale Transistors provides a description on the recent development of theory, modeling, and simulation of nanotransistors for electrical engineers, physicists, and chemists working on nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors. After basic concepts are reviewed, the text summarizes the essentials of traditional semiconductor devices, digital circuits, and systems to supply a baseline against which new devices can be assessed. A nontraditional view of the MOSFET using concepts that are valid at nanoscale is developed and then applied to nanotube FET as an example of how to extend the concepts to revolutionary nanotransistors. This practical guide then explore the limits of devices by discussing conduction in single molecules

Book Carbon Nanotubes

Download or read book Carbon Nanotubes written by Stephanie Reich and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes are exceptionally interesting from a fundamental research point of view. Many concepts of one-dimensional physics have been verified experimentally such as electron and phonon confinement or the one-dimensional singularities in the density of states; other 1D signatures are still under debate, such as Luttinger-liquid behavior. Carbon nanotubes are chemically stable, mechanically very strong, and conduct electricity. For this reason, they open up new perspectives for various applications, such as nano-transistors in circuits, field-emission displays, artificial muscles, or added reinforcements in alloys. This text is an introduction to the physical concepts needed for investigating carbon nanotubes and other one-dimensional solid-state systems. Written for a wide scientific readership, each chapter consists of an instructive approach to the topic and sustainable ideas for solutions. The former is generally comprehensible for physicists and chemists, while the latter enable the reader to work towards the state of the art in that area. The book gives for the first time a combined theoretical and experimental description of topics like luminescence of carbon nanotubes, Raman scattering, or transport measurements. The theoretical concepts discussed range from the tight-binding approximation, which can be followed by pencil and paper, to first-principles simulations. We emphasize a comprehensive theoretical and experimental understanding of carbon nanotubes including - general concepts for one-dimensional systems - an introduction to the symmetry of nanotubes - textbook models of nanotubes as narrow cylinders - a combination of ab-initio calculations and experiments - luminescence excitation spectroscopy linked to Raman spectroscopy - an introduction to the 1D-transport properties of nanotubes - effects of bundling on the electronic and vibrational properties and - resonance Raman scattering in nanotubes.

Book Compact Modeling

Download or read book Compact Modeling written by Gennady Gildenblat and published by Springer Science & Business Media. This book was released on 2010-06-22 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

Book Applied Physics of Carbon Nanotubes

Download or read book Applied Physics of Carbon Nanotubes written by Slava V. Rotkin and published by Springer Science & Business Media. This book was released on 2005-10-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes the state-of-the-art in fundamental, applied and device physics of nanotubes, including fabrication, manipulation and characterization for device applications; optics of nanotubes; transport and electromechanical devices and fundamentals of theory for applications. This information is critical to the field of nanoscience since nanotubes have the potential to become a very significant electronic material for decades to come. The book will benefit all all readers interested in the application of nanotubes, either in their theoretical foundations or in newly developed characterization tools that may enable practical device fabrication.

Book Fundamentals of Nanotransistors

Download or read book Fundamentals of Nanotransistors written by Mark Lundstrom and published by World Scientific Publishing Company Incorporated. This book was released on 2018 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transistor is the key enabler of modern electronics. Progress in transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to device physics are less and less suitable. These lectures describe a way of understanding MOSFETs and other transistors that is much more suitable than traditional approaches when the critical dimensions are measured in nanometers. It uses a novel, "bottom-up approach" that agrees with traditional methods when devices are large, but that also works for nano-devices. Surprisingly, the final result looks much like the traditional, textbook, transistor models, but the parameters in the equations have simple, clear interpretations at the nanoscale. The objective is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits.

Book Energy Systems  Drives and Automations

Download or read book Energy Systems Drives and Automations written by Afzal Sikander and published by Springer. This book was released on 2021-09-01 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected research papers presented at the Second International Conference on Energy Systems, Drives and Automations (ESDA 2019), held in Kolkata on 28–29 December 2019. It covers a broad range of topics in the fields of renewable energy, power management, drive systems for electrical machines and automation. Also discussing a variety of related tools and techniques, the book offers a valuable resource for researchers, professionals and students in electrical and mechanical engineering disciplines.

Book Electronic Systems and Intelligent Computing

Download or read book Electronic Systems and Intelligent Computing written by Pradeep Kumar Mallick and published by Springer Nature. This book was released on 2020-09-22 with total page 1126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected, high-quality research papers from the International Conference on Electronic Systems and Intelligent Computing (ESIC 2020), held at NIT Yupia, Arunachal Pradesh, India, on 2 – 4 March 2020. Discussing the latest challenges and solutions in the field of smart computing, cyber-physical systems and intelligent technologies, it includes papers based on original theoretical, practical and experimental simulations, developments, applications, measurements, and testing. The applications and solutions featured provide valuable reference material for future product development.

Book Advanced Nanoelectronics

Download or read book Advanced Nanoelectronics written by Muhammad Mustafa Hussain and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.

Book Intelligent Computing Techniques for Smart Energy Systems

Download or read book Intelligent Computing Techniques for Smart Energy Systems written by Akhtar Kalam and published by Springer Nature. This book was released on 2019-12-16 with total page 1011 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book compiles the research works related to smart solutions concept in context to smart energy systems, maintaining electrical grid discipline and resiliency, computational collective intelligence consisted of interaction between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It includes high-quality papers presented in the International Conference on Intelligent Computing Techniques for Smart Energy Systems organized by Manipal University Jaipur. This book will motivate scholars to work in these areas. The book also prophesies their approach to be used for the business and the humanitarian technology development as research proposal to various government organizations for funding approval.

Book The gm ID Methodology  a sizing tool for low voltage analog CMOS Circuits

Download or read book The gm ID Methodology a sizing tool for low voltage analog CMOS Circuits written by Paul Jespers and published by Springer Science & Business Media. This book was released on 2009-12-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: IC designers appraise currently MOS transistor geometries and currents to compromise objectives like gain-bandwidth, slew-rate, dynamic range, noise, non-linear distortion, etc. Making optimal choices is a difficult task. How to minimize for instance the power consumption of an operational amplifier without too much penalty regarding area while keeping the gain-bandwidth unaffected in the same time? Moderate inversion yields high gains, but the concomitant area increase adds parasitics that restrict bandwidth. Which methodology to use in order to come across the best compromise(s)? Is synthesis a mixture of design experience combined with cut and tries or is it a constrained multivariate optimization problem, or a mixture? Optimization algorithms are attractive from a system perspective of course, but what about low-voltage low-power circuits, requiring a more physical approach? The connections amid transistor physics and circuits are intricate and their interactions not always easy to describe in terms of existing software packages. The gm/ID synthesis methodology is adapted to CMOS analog circuits for the transconductance over drain current ratio combines most of the ingredients needed in order to determine transistors sizes and DC currents.

Book Nanotubes and Nanowires

    Book Details:
  • Author : Peter John Burke
  • Publisher : World Scientific
  • Release : 2007
  • ISBN : 9812704353
  • Pages : 135 pages

Download or read book Nanotubes and Nanowires written by Peter John Burke and published by World Scientific. This book was released on 2007 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of nanotubes and nanowires is evolving at a rapid pace, with many potential applications in electronics, optics, and sensors, to name a few. In this book, various prominent researchers summarize our current understanding of these new materials systems, as well as some of these potential applications. A snapshot of the state-of-the-art in the field of nanowires and nanotubes, the contributions give an instructive mix of experimental, theoretical, and visionary material to give the reader an indication of where the field is now, and where it is going. With several points of view represented, including academic theoreticians, academic experimental device engineers, and industry researchers from well-known semiconductor companies, Nanotubes and Nanowires is an essential source of reference for physicists, chemists, materials scientists, and graduate students interested in keeping abreast of the latest developments in nanotechnology.

Book Nanoelectronic Mixed Signal System Design

Download or read book Nanoelectronic Mixed Signal System Design written by Saraju Mohanty and published by McGraw Hill Professional. This book was released on 2015-02-20 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering both the classical and emerging nanoelectronic technologies being used in mixed-signal design, this book addresses digital, analog, and memory components. Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook/Physical Sciences & Mathematics category. Nanoelectronic Mixed-Signal System Design offers professionals and students a unified perspective on the science, engineering, and technology behind nanoelectronics system design. Written by the director of the NanoSystem Design Laboratory at the University of North Texas, this comprehensive guide provides a large-scale picture of the design and manufacturing aspects of nanoelectronic-based systems. It features dual coverage of mixed-signal circuit and system design, rather than just digital or analog-only. Key topics such as process variations, power dissipation, and security aspects of electronic system design are discussed. Top-down analysis of all stages--from design to manufacturing Coverage of current and developing nanoelectronic technologies--not just nano-CMOS Describes the basics of nanoelectronic technology and the structure of popular electronic systems Reveals the techniques required for design excellence and manufacturability

Book Design  Simulation and Construction of Field Effect Transistors

Download or read book Design Simulation and Construction of Field Effect Transistors written by Dhanasekaran Vikraman and published by BoD – Books on Demand. This book was released on 2018-07-18 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, research on microelectronics has been specifically focused on the proposition of efficient alternative methodologies and materials to fabricate feasible integrated circuits. This book provides a general background of thin film transistors and their simulations and constructions. The contents of the book are broadly classified into two topics: design and simulation of FETs and construction of FETs. All the authors anticipate that the provided chapters will act as a single source of reference for the design, simulation and construction of FETs. This edited book will help microelectronics researchers with their endeavors and would be a great addition to the realm of semiconductor physics.