EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Studies on Controlling the Morphology of an Organic Bulk heterojunction Photovoltaic Device to Improve Its Efficiency

Download or read book Studies on Controlling the Morphology of an Organic Bulk heterojunction Photovoltaic Device to Improve Its Efficiency written by Kelly Rene McLeod and published by . This book was released on 2013 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic study of the effects of alteration of processing parameters in combination with incorporation of polyhedral oligomeric silsesquioxane (POSS) molecules on the properties and structure of bulk heterojunction organic photovoltaic cells made from P3HT:PCBM blends was undertaken. On implementing the correct processing protocol, incorporation of POSS molecules with specific structures resulted in considerable enhancement in cell efficiencies. Octaaminophenyl POSS incorporation resulted in a 20% increase in cell efficiency over the control and caused the formation of crystalline, fiber-like structures in the active layer of the photovoltaic cell.--P. iv.

Book Controlling the Morphology of Solution processed Bulk Heterojunction Photovoltaics

Download or read book Controlling the Morphology of Solution processed Bulk Heterojunction Photovoltaics written by Kevin Andrew Sivula and published by . This book was released on 2007 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Examining and Controlling the Morphology of the Photoactive Layer of Organic Photovoltaic Devices

Download or read book Examining and Controlling the Morphology of the Photoactive Layer of Organic Photovoltaic Devices written by Sameer Vajjala Kesava and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic devices such as solar cells, transistors and light-emitting diodes (LEDs) fabricated using organic semiconductors offer a potential feasible alternative to their inorganic counterparts due to several advantages such as ease of processing (ink-jet printing, roll-to-roll processing), flexibility and excellent control over the electronic properties through chemical modifications. Compared to the inorganic semiconductors, however, the performance of organic semiconductor-based electronic devices are much lower. For example, in the case of photovoltaic devices (solar cells), the power-conversion efficiencies are still lower (7%-10%) compared to that of inorganic solar cells (> 25%). The efficiency of a solar cell is determined, among other factors, to a significant extent by the morphology of the active layer, the thin film where photons are absorbed and charges generated. Even though significant improvement in the efficiencies have been achieved, mainly through band-gap engineering and processing optimization, a fundamental understanding of the structural and morphological effects of the active layer on the performance of organic photovoltaic devices remains obscured. In this work, the focus is on examining the structure-function relationships in solution-processed bulk-heterojunction organic photovoltaic devices and development of processing techniques for device optimization. A bulk-heterojunction device is formed by mixing of donor-acceptor semiconductors, and the subsequent structure formed in the active layer is dictated by the miscibility and crystallization of the components, which are functions of processing conditions. Excitons (electron-hole pairs bound by coulombic forces) formed in the donor semiconductor upon absorption of light have a diffusion length of around 5-10 nm before recombination occurs. Thus the structural length scales formed in the active layer determine the number of excitons that can dissociate into charges. We have examined the microstructure of poly(3-hexyl thiophene) (P3HT) donor and phenyl-C61-butyric acid methyl ester (PC61BM) acceptor mixture using grazing incidence small angle X-ray scattering (GISAXS) and energy-filtered transmission electron microscopy (EFTEM) to characterize the in-plane structural length scales for various processing conditions such as annealing temperatures and spin-casting solvents. Our results show that the structural length scales are driven by self-limiting P3HT crystallization upon thermal annealing, which correlate to the internal quantum efficiencies of the devices. In contrast, it has been reported in the case of poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT)/ fullerene mixtures that thermal annealing results in crystallization of PBTTT with unconstrained lateral dimensions causing coarsening of the in-plane characteristic length scales. Thus the morphological evolution in polymer/fullerene solar cells, and consequently device performance, depends on the crystallization motif of the polymer. The microstructure resulting from mixing of donor-acceptor semiconductors can yield distinctive donor-acceptor interfaces that affect charge separation and recombination. Our studies utilizing a low band-gap poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]germole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PGeBTBT) donor and PC71BM acceptor examine the effects of mixing on the charge generation in a device. Composition of mixed phases ascertained qualitatively and quantitatively using EFTEM and resonance soft X-ray scattering (RSOXS) show that the concentration of polymer in the mixed phase decreases as fullerene concentration in the mixture is increased. This resulted in a concomitant increase in the device performance. Similarly, photo-induced absorption studies carried out using ultrafast spectroscopy show increase in polaron concentration with increase in purity of the mixed phase. Grazing-incidence wide-angle X-ray scattering (GIWAXS) data show a change in fullerene aggregation with increase in fullerene concentration in the mixture. This indicates that adding polymer to the mixed phase results in dispersal of fullerene, and consequently, changing the local environment of the polymer affects formation of charge-transfer states and subsequent dissociation into individual charges. Thus, high interfacial area that is formed upon intimate mixing of polymer/fullerene, considered ideal for efficient exciton dissociation, counteracts through high charge recombination. Our results show that the composition of mixed phases affects charge separation at the interface consequently affecting device performance of organic photovoltaics. Another important aspect that has been shown to affect device performance of organic photovoltaics is the orientation of polymer crystals with respect to the substrate. For example, P3HT predominantly orients in an edge-on configuration, i.e., with the [pi]-[pi] bond stacking direction parallel to the substrate. It is hypothesized that out of plane [pi]-[pi] stacking, called face-on orientation, is important for effective charge transport. One way to achieve enhancement of face-on orientation is by directional crystallization which has been shown to be very effective for P3HT -- in this case, directional crystallization from solution. In this context, 'zone-annealing' is relevant as it has been employed to directionally crystallize polymers. In this work, we designed and developed the zone-annealing equipment, which can yield thermal gradients greater than 60°C/mm. Preliminary results from GIWAXS experiments on P3HT/PC61BM thin films show anisotropy in the structure and a moderate enhancement of face-on orientated P3HT crystallites. This technique was extended to organic field-effect transistors (OFET) to enhance charge mobilities through directional crystallization of organic semiconductors. In case of P3HT, the increment in charge mobilities was by a factor of 2 upon zone-annealing. However, in the case of organic small molecule semiconductor, 2,7-dioctyl[1]benzo- thieno[3,2-b][1] benzothiophene (C8-BTBT) , highly aligned crystalline domains were obtained -- a very promising result for fabricating high mobility OFETs. Thus, the zone-annealing technique provides a handle for controlling the morphology of organic thin film electronic devices.

Book Optoelectronic Organic Inorganic Semiconductor Heterojunctions

Download or read book Optoelectronic Organic Inorganic Semiconductor Heterojunctions written by Ye Zhou and published by CRC Press. This book was released on 2021-01-20 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronic Organic-Inorganic Semiconductor Heterojunctions summarizes advances in the development of organic-inorganic semiconductor heterojunctions, points out challenges and possible solutions for material/device design, and evaluates prospects for commercial applications. Introduces the concept and basic mechanism of semiconductor heterojunctions Describes a series of organic-inorganic semiconductor heterojunctions with desirable electrical and optical properties for optoelectronic devices Discusses typical devices such as solar cells, photo-detectors, and optoelectronic memories Outlines the materials and device challenges as well as possible strategies to promote the commercial translation of semiconductor heterojunctions-based optoelectronic devices Aimed at graduate students and researchers working in solid-state materials and electronics, this book offers a comprehensive yet accessible view of the state of the art and future directions.

Book Progress in High Efficient Solution Process Organic Photovoltaic Devices

Download or read book Progress in High Efficient Solution Process Organic Photovoltaic Devices written by Yang Yang and published by Springer. This book was released on 2015-02-17 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process for organic solar cells and provides a state-of-the-art report of the latest developments. World class experts cover fundamental, materials, devices and manufacturing technology of OPV technology.

Book Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications

Download or read book Studies of Organic Semiconductor Nanostructures and Their Photovoltaic Applications written by Guoqiang Ren and published by . This book was released on 2013 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells are promising by virtue of their low-cost production, mechanical flexibility of plastics, and the range of possible applications. Although progress has been made in developing organic solar cells in the past decade, the power conversion efficiency now about 8-10% is still substantially lower than silicon-based devices. It has been recognized that the photovoltaic conversion process in organic solar cells is dependent on the morphology of the photoactive layer which consists of a binary blend of donor and acceptor materials. This work explores different approaches to controlling the morphology of bulk heterojunction polymer solar cells towards improving the photovoltaic efficiency, including diblock copolymer assemblies, organic semiconductor nanowires, and the use of processing additives. In addition, we explore a new method of characterizing the nanoscale morphology of polymer solar cells. Investigation of the photovoltaic properties, charge transport, and morphology of a series of diblock conjugated copolymers as a function of block composition showed that the highest efficiency was achieved at the 50% block composition. Nanowires assembled from diblock copolythiophenes of different compositions showed a tunable average aspect ratio (length/width) of 50-260, which revealed an increase of efficiency with increasing aspect ratio. All-nanowire solar cells comprising a polymer nanowire donor and a small-molecule nanowire acceptor were found to have enhanced photovoltaic efficiency. The use of a processing additive was found to give optimum device performance in benzobisthiazole-based donor-acceptor copolymer/fullerene and poly(3-hexylthiophene)/non-fullerene photovoltaic blend systems. The performance of non-fullerene polymer solar cells was enhanced 10-fold by using only 0.2 vol% additive and the mechanism of enhancement in efficiency was explained in terms of the optimized nanoscale morphology. Scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy was successfully used for the first time to image the nanoscale morphology of all-polymer bulk heterojunction solar cells, demonstrating high spatial resolution with chemical specificity.

Book Strategies for Controlling Bulk Heterojunction Morphology

Download or read book Strategies for Controlling Bulk Heterojunction Morphology written by Zach Daniel Seibers and published by . This book was released on 2016 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reflectivity reveals that these P3HT brush layers have severe effects on the vertical distribution of PCBM across the depth of the BHJ films, the extent of which depends on the grafting density of the P3HT brush layer. These results are confirmed by energy-filtered transmission electron microscopy measurements. Another emerging trend in the advancement of OPVs is through the addition of a third component to impose morphological or electronic benefits to BHJ-based devices. In Chapter 3 of this dissertation, three different low MW P3HTs are incorporated into BHJ films as additives to reveal fundamental aspects of their behavior as a function of size and loading level. The best performing loading levels for each additive are found to be inversely proportional to the MW of the P3HT additive and appear to be driven by a coarsening of BHJ film morphology. The incorporation of porphyrin-based additives into BHJ OPV devices has been an emerging trend in recent years due to their strong solar absorption and [pi] − [pi] interactions between PCBM nanoparticles and porphyrin centers. Building on these reports, and the investigations of low MW P3HTs, porphyrin-capped low MW P3HTs (PP-P3HT)s are synthesized and incorporated into BHJ films as additives. Although PP-P3HTs impose many substantial morphological benefits to BHJ films, these favorable properties are overshadowed by lackluster device performances, ostensibly due to the presence of the Si-O linkage between the porphyrin and P3HT chains.

Book Improving Device Efficiencies in Organic Photovoltaics Through the Manipulation of Device Architectures and the Development of Low bandgap Materials

Download or read book Improving Device Efficiencies in Organic Photovoltaics Through the Manipulation of Device Architectures and the Development of Low bandgap Materials written by Andrew Hideo Rice and published by . This book was released on 2013 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two decades, vast amounts of research have been conducted in the pursuit of suitable organic semiconductors to replace inorganic materials in electronic applications due to their advantages of being lightweight, flexible, and solution-processible. However, before organic photovoltaics (OPVs) can be truly competitive and commercially viable, their efficiencies must be improved significantly. In this examination, we pursue higher efficiency OPVs in two different ways. Our attempts focus on 1) altering the microstructure of devices to improve charge dissociation, charge transport, and our understanding of how these devices function, and 2) tailoring materials to achieve optimal band gaps and energy levels for use in organic electronics. First, we demonstrate how the vertical morphology of bulk heterojunction (BHJ) solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the cathode. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy (XPS) and conductive and photoconductive atomic force microscopy (cAFM and pcAFM) provide detailed information about how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and mixed separately; exposure to the nanowire during self-assembly may allow the fullerene to coat nanowire surfaces and influence the photocurrent within the device. Furthermore, because we are able to carefully control the regioregularity of our P3HT, we are able to produce a series of nanowires with regioregularities ranging between 93% and 99%. X-ray diffraction (XRD) shows that as the regioregularity of the polymer increases, the coherent domain size along the long-axis of the nanowires also becomes larger. When organic field effect transistors (OFETs) are made from these materials, the hole mobility of the nanowire films also has a positive correlation with regioregularity. As the domains within the nanowires grow larger, the frequency of domain boundaries decreases, allowing charges to percolate more efficiently along the nanowire. Additionally, we show that by introducing C60 into the active layer of P3HT:PCBM devices, we can modulate the crystal habit of the PCBM domains. Using optical microscopy and UV-vis absorption spectroscopy, we demonstrate that C60 additions alter the crystal morphology and greatly reduce the size of fullerene crystallites that are observed after extended annealing times and under aggressive aging conditions. We also show by fabricating organic field-effect transistors (OFETs) from PCBM:C60 blends that the incorporation of C60 does not adversely affect the electron mobility in these films. Finally, we show that as C60 is incorporated into P3HT:PCBM OPVs, devices become more thermally stable and do not degrade in performance as rapidly as traditional P3HT:PCBM blends. Lastly, the synthesis of four alternating copolymers using benzo[2,1-b;3,4-bʹ]dithiophene (BDP) as the common donor unit is presented. Incorporating BDP, which consists of fused dithiophene units with a benzene ring, into these polymers should produce a low-lying highest occupied molecular orbital (HOMO) energy level. Low-lying HOMO levels are desirable to produce high open circuit voltages (V[subscript OC]) in organic BHJ photovoltaic devices. The preliminary results of their performance in solar cells, using PCBM as the electron acceptor, is presented. The V[subscript OC] values follow the expected trend: increasing with decreasing HOMO level of the polymer. High V[subscript OC] values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The highest initial power conversion efficiency (PCE) achieved in these unoptimized devices was 1.11% due to relatively low J[subscript sc] values. The variation observed in the J[subscript sc] values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices.

Book Organic Photovoltaics

Download or read book Organic Photovoltaics written by Christoph Brabec and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.

Book Theoretical and Computational Chemistry

Download or read book Theoretical and Computational Chemistry written by Iwona Gulaczyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the applications of computational chemistry ranging from the pharmaceutical industry and molecular structure determination to spectroscopy and astrophysics. The authors detail how calculations can be used to solve a wide range of practical challenges encountered in research and industry.

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351831216
  • Pages : 510 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Polymer Solar Cells  Molecular Design and Microstructure Control

Download or read book Polymer Solar Cells Molecular Design and Microstructure Control written by Kui Zhao and published by Frontiers Media SA. This book was released on 2020-12-10 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Book Polymeric Solar Cells

Download or read book Polymeric Solar Cells written by Frederik C. Krebs and published by DEStech Publications, Inc. This book was released on 2010 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book offers a comprehensive treatment of nonhybrid polymeric solar cells from the basic chemistry of donor and acceptor materials through device design, processing and manufacture. Written by a team of Europe-based experts, the text shows the steps and strategies of successfully moving from the science of solar cells to commercial device production. Chapters focus on technologies that lead to increased efficiencies, longer usable life and lower costs. Highlighted are ways to fabricate solar cells from a range of polymers and develop them into marketable commodities. Special consideration is given to solar cells as intellectual property.

Book Fundamentals of Materials for Energy and Environmental Sustainability

Download or read book Fundamentals of Materials for Energy and Environmental Sustainability written by David S. Ginley and published by Cambridge University Press. This book was released on 2011-11-30 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.

Book Graphene Science Handbook  Six Volume Set

Download or read book Graphene Science Handbook Six Volume Set written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-26 with total page 3379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)

Book Emerging Photovoltaic Materials

Download or read book Emerging Photovoltaic Materials written by Santosh K. Kurinec and published by John Wiley & Sons. This book was released on 2018-12-03 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.

Book Photosynthetic Protein Based Photovoltaics

Download or read book Photosynthetic Protein Based Photovoltaics written by Swee Ching Tan and published by CRC Press. This book was released on 2018-09-03 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the discovery of the photoelectric effect, researchers have been trying to improve the efficiency of converting sunlight into electricity through photovoltaic devices. Photosynthetic organisms provide clues for harvesting sunlight and storing the energy in chemical forms. This book offers a concise overview of the fundamental concepts of photosynthesis and the emerging photovoltaic technologies, casting light on the symbiotic relation between these spheres of science. Although there are many books about the fundamentals of photosynthesis and the various aspects of the photosynthetic processes, this is the first volume to focus on the prospects of studying the photosynthetic proteins, understanding and applying their properties to design prospective solar energy conversion devices that are sustainable and efficient. All in all, the book aims to bring together the present know-how on organic photovoltaics and dye-sensitized solar cells with that of the emerging bio-photovoltaics and the underlying physics of photosynthesis to foster a more eclectic research that would converge towards a sustainable energy technology for the future. The book mainly serves as a bridge to connect biochemists, who study photosynthetic proteins, and physicists and engineers who design and develop photovoltaic devices. Scientists, engineers and students in the fields of photosynthetic research and solar energy research can use this book as a ready reference. Key selling features: Covers both methods and bio-based materials needed to build bio-based photovoltaics Focuses on both techniques and applications Summarizes the advantages and limitations of various techniques Contributors from multiple disciplines integrate the knowledge of photosynthetic proteins and the physics/engineering of photovoltaic devices. Includes adaptive designs and techniques used in other types of solar cells to for the design of protein-based PVs