Download or read book Statistical Signal Processing in Engineering written by Umberto Spagnolini and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: A problem-solving approach to statistical signal processing for practicing engineers, technicians, and graduate students This book takes a pragmatic approach in solving a set of common problems engineers and technicians encounter when processing signals. In writing it, the author drew on his vast theoretical and practical experience in the field to provide a quick-solution manual for technicians and engineers, offering field-tested solutions to most problems engineers can encounter. At the same time, the book delineates the basic concepts and applied mathematics underlying each solution so that readers can go deeper into the theory to gain a better idea of the solution’s limitations and potential pitfalls, and thus tailor the best solution for the specific engineering application. Uniquely, Statistical Signal Processing in Engineering can also function as a textbook for engineering graduates and post-graduates. Dr. Spagnolini, who has had a quarter of a century of experience teaching graduate-level courses in digital and statistical signal processing methods, provides a detailed axiomatic presentation of the conceptual and mathematical foundations of statistical signal processing that will challenge students’ analytical skills and motivate them to develop new applications on their own, or better understand the motivation underlining the existing solutions. Throughout the book, some real-world examples demonstrate how powerful a tool statistical signal processing is in practice across a wide range of applications. Takes an interdisciplinary approach, integrating basic concepts and tools for statistical signal processing Informed by its author’s vast experience as both a practitioner and teacher Offers a hands-on approach to solving problems in statistical signal processing Covers a broad range of applications, including communication systems, machine learning, wavefield and array processing, remote sensing, image filtering and distributed computations Features numerous real-world examples from a wide range of applications showing the mathematical concepts involved in practice Includes MATLAB code of many of the experiments in the book Statistical Signal Processing in Engineering is an indispensable working resource for electrical engineers, especially those working in the information and communication technology (ICT) industry. It is also an ideal text for engineering students at large, applied mathematics post-graduates and advanced undergraduates in electrical engineering, applied statistics, and pure mathematics, studying statistical signal processing.
Download or read book Statistical Signal Processing written by Swagata Nandi and published by Springer Nature. This book was released on 2020-08-21 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to various signal processing models that have been used in analyzing periodic data, and discusses the statistical and computational methods involved. Signal processing can broadly be considered to be the recovery of information from physical observations. The received signals are usually disturbed by thermal, electrical, atmospheric or intentional interferences, and due to their random nature, statistical techniques play an important role in their analysis. Statistics is also used in the formulation of appropriate models to describe the behavior of systems, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Analyzing different real-world data sets to illustrate how different models can be used in practice, and highlighting open problems for future research, the book is a valuable resource for senior undergraduate and graduate students specializing in mathematics or statistics.
Download or read book An Introduction to Statistical Signal Processing written by Robert M. Gray and published by Cambridge University Press. This book was released on 2004-12-02 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Download or read book Statistical Signal Processing written by T. Chonavel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only book on the subject at this level, this is a well written formalised and concise presentation of the basis of statistical signal processing. It teaches a wide variety of techniques, demonstrating how they can be applied to many different situations.
Download or read book Statistical Signal Processing of Complex Valued Data written by Peter J. Schreier and published by Cambridge University Press. This book was released on 2010-02-04 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex-valued random signals are embedded in the very fabric of science and engineering, yet the usual assumptions made about their statistical behavior are often a poor representation of the underlying physics. This book deals with improper and noncircular complex signals, which do not conform to classical assumptions, and it demonstrates how correct treatment of these signals can have significant payoffs. The book begins with detailed coverage of the fundamental theory and presents a variety of tools and algorithms for dealing with improper and noncircular signals. It provides a comprehensive account of the main applications, covering detection, estimation, and signal analysis of stationary, nonstationary, and cyclostationary processes. Providing a systematic development from the origin of complex signals to their probabilistic description makes the theory accessible to newcomers. This book is ideal for graduate students and researchers working with complex data in a range of research areas from communications to oceanography.
Download or read book Multirate Statistical Signal Processing written by Omid S. Jahromi and published by Springer Science & Business Media. This book was released on 2007-03-16 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multirate Statistical Signal Processing introduces a statistical theory for extracting information from related signals with different sampling rates. This new theory generalizes the conventional deterministic theory of multirate systems beyond many of its constraints. Further, it allows for the formulation and solution of new problems: spectrum estimation, time-delay estimation and sensor fusion in the realm of multirate signal processing. This self-contained book presents background material, potential applications and leading-edge research.
Download or read book Statistical Signal Processing for Neuroscience and Neurotechnology written by Karim G. Oweiss and published by Academic Press. This book was released on 2010-09-22 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a uniquely comprehensive reference that summarizes the state of the art of signal processing theory and techniques for solving emerging problems in neuroscience, and which clearly presents new theory, algorithms, software and hardware tools that are specifically tailored to the nature of the neurobiological environment. It gives a broad overview of the basic principles, theories and methods in statistical signal processing for basic and applied neuroscience problems.Written by experts in the field, the book is an ideal reference for researchers working in the field of neural engineering, neural interface, computational neuroscience, neuroinformatics, neuropsychology and neural physiology. By giving a broad overview of the basic principles, theories and methods, it is also an ideal introduction to statistical signal processing in neuroscience. - A comprehensive overview of the specific problems in neuroscience that require application of existing and development of new theory, techniques, and technology by the signal processing community - Contains state-of-the-art signal processing, information theory, and machine learning algorithms and techniques for neuroscience research - Presents quantitative and information-driven science that has been, or can be, applied to basic and translational neuroscience problems
Download or read book Fundamentals of Statistical Signal Processing written by Steven M. Kay and published by Pearson Education. This book was released on 2013 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: "For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
Download or read book Introduction to Applied Statistical Signal Analysis written by Richard Shiavi and published by Elsevier. This book was released on 2010-07-19 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Applied Statistical Signal Analysis, Third Edition, is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech. Topics presented include mathematical bases, requirements for estimation, and detailed quantitative examples for implementing techniques for classical signal analysis. This book includes over one hundred worked problems and real world applications. Many of the examples and exercises use measured signals, most of which are from the biomedical domain. The presentation style is designed for the upper level undergraduate or graduate student who needs a theoretical introduction to the basic principles of statistical modeling and the knowledge to implement them practically. Includes over one hundred worked problems and real world applications. Many of the examples and exercises in the book use measured signals, many from the biomedical domain.
Download or read book Signal Processing and Data Analysis written by Tianshuang Qiu and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-07-09 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents digital signal processing theories and methods and their applications in data analysis, error analysis and statistical signal processing. Algorithms and Matlab programming are included to guide readers step by step in dealing with practical difficulties. Designed in a self-contained way, the book is suitable for graduate students in electrical engineering, information science and engineering in general.
Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-06-20 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
Download or read book Genomic Signal Processing and Statistics written by Edward R. Dougherty and published by Hindawi Publishing Corporation. This book was released on 2005 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in genomic studies have stimulated synergetic research and development in many cross-disciplinary areas. Processing the vast genomic data, especially the recent large-scale microarray gene expression data, to reveal the complex biological functionality, represents enormous challenges to signal processing and statistics. This perspective naturally leads to a new field, genomic signal processing (GSP), which studies the processing of genomic signals by integrating the theory of signal processing and statistics. Written by an international, interdisciplinary team of authors, this invaluable edited volume is accessible to students just entering this emergent field, and to researchers, both in academia and in industry, in the fields of molecular biology, engineering, statistics, and signal processing. The book provides tutorial-level overviews and addresses the specific needs of genomic signal processing students and researchers as a reference book. The book aims to address current genomic challenges by exploiting potential synergies between genomics, signal processing, and statistics, with special emphasis on signal processing and statistical tools for structural and functional understanding of genomic data. The first part of this book provides a brief history of genomic research and a background introduction from both biological and signal-processing/statistical perspectives, so that readers can easily follow the material presented in the rest of the book. In what follows, overviews of state-of-the-art techniques are provided. We start with a chapter on sequence analysis, and follow with chapters on feature selection, classification, and clustering of microarray data. We then discuss the modeling, analysis, and simulation of biological regulatory networks, especially gene regulatory networks based on Boolean and Bayesian approaches. Visualization and compression of gene data, and supercomputer implementation of genomic signal processing systems are also treated. Finally, we discuss systems biology and medical applications of genomic research as well as the future trends in genomic signal processing and statistics research.
Download or read book Discrete Random Signals and Statistical Signal Processing written by Charles W. Therrien and published by . This book was released on 1992 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear Signal Processing written by Gonzalo R. Arce and published by John Wiley & Sons. This book was released on 2005-01-03 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed that encompass a large portion of the nonlinear signal processing tools proposed in the literature over the past several decades. Key features include: * Numerous problems at the end of each chapter to aid development and understanding * Examples and case studies provided throughout the book in a wide range of applications bring the text to life and place the theory into context * A set of 60+ MATLAB software m-files allowing the reader to quickly design and apply any of the nonlinear signal processing algorithms described in the book to an application of interest is available on the accompanying FTP site.
Download or read book Academic Press Library in Signal Processing written by Mats Viberg and published by Academic Press. This book was released on 2013-08-31 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in array and statistical signal processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in array and statistical signal processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Download or read book Statistical Image Processing and Multidimensional Modeling written by Paul Fieguth and published by Springer Science & Business Media. This book was released on 2010-10-17 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.
Download or read book Fractional Order Signal Processing written by Saptarshi Das and published by Springer Science & Business Media. This book was released on 2011-09-15 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book tries to briefly introduce the diverse literatures in the field of fractional order signal processing which is becoming an emerging topic among an interdisciplinary community of researchers. This book is aimed at postgraduate and beginning level research scholars who would like to work in the field of Fractional Order Signal processing (FOSP). The readers should have preliminary knowledge about basic signal processing techniques. Prerequisite knowledge of fractional calculus is not essential and is exposited at relevant places in connection to the appropriate signal processing topics. Basic signal processing techniques like filtering, estimation, system identification, etc. in the light of fractional order calculus are presented along with relevant application areas. The readers can easily extend these concepts to varied disciplines like image or speech processing, pattern recognition, time series forecasting, financial data analysis and modeling, traffic modeling in communication channels, optics, biomedical signal processing, electrochemical applications and many more. Adequate references are provided in each category so that the researchers can delve deeper into each area and broaden their horizon of understanding. Available MATLAB tools to simulate FOSP theories are also introduced so that the readers can apply the theoretical concepts right-away and gain practical insight in the specific domain.