EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structure Loaded Vacuum Laser Driven Particle Acceleration Experiments at SLAC

Download or read book Structure Loaded Vacuum Laser Driven Particle Acceleration Experiments at SLAC written by and published by . This book was released on 2007 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

Book Inverse Transition Radiation Laser Acceleration Experiments at SLAC

Download or read book Inverse Transition Radiation Laser Acceleration Experiments at SLAC written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a series of laser-driven particle acceleration experiments that are aimed at studying laser-particle acceleration as an inverse-radiation process. To this end we employ a semi-open vacuum setup with a thin planar boundary that interacts with the laser and the electromagnetic field of the electron beam. Particle acceleration from different types of boundaries will be studied and compared to the theoretical expectations from the Inverse-radiation picture and the field path integral method. We plan to measure the particle acceleration effect from transparent, reflective, black, and rough surface boundaries. While the agreement between the two acceleration pictures is straightforward to prove analytically for the transparent and reflective boundaries the equivalence is not clear-cut for the absorbing and rough-surface boundaries. Experimental observation may provide the evidence to distinguish between the models.

Book Development of High Gradient Dielectric Laser Driven Particle Accelerator Structures

Download or read book Development of High Gradient Dielectric Laser Driven Particle Accelerator Structures written by and published by . This book was released on 2013 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

Book Advanced Accelerator Concepts

Download or read book Advanced Accelerator Concepts written by Manoel Conde and published by American Institute of Physics. This book was released on 2006-12-13 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: This workshop covered the general field of advanced particle accelerators, exploring the science and technology of a multitude of novel acceleration schemes. Various schemes under study utilize combinations of plasmas, laser beams, dielectric materials, and RF power. The development of technologies that will enable the design of future high energy physics machines is the underlying goal of this workshop.

Book Lepton and Photon Interactions at High Energies

Download or read book Lepton and Photon Interactions at High Energies written by Richard Brenner and published by World Scientific. This book was released on 2006 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lepton-Photon symposiums ? as represented by the contributions in this volume ? are among the most popular conferences in high energy physics since they give an in-depth snapshots of the status of the field as provided by leading experts.The volume covers the latest results on flavor factories, quantum chromodynamics (QCD), electroweak physics, dark matter searches, neutrino physics and cosmology, from a phenomenological point of view. It also offers a glimpse of the immediate future of the field through summaries on the status of the next generation of high energy accelerators and planned facilities for astroparticle physics.The review nature of the articles makes the volume particularly useful to students, as well as being of interest to established researches in high-energy physics and related fields.

Book Proposed Few optical Cycle Laser driven ParticleAccelerator Structure

Download or read book Proposed Few optical Cycle Laser driven ParticleAccelerator Structure written by and published by . This book was released on 2006 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: We describe a transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles, however to preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. Finally, it shows potential for an unloaded gradient of 10 GeV/m with 10 fsec laser pulses and the possibility to accelerate 106 electrons per bunch at an efficiency of 8%. The fabrication procedure and a proposed near term experiment with this accelerator structure are presented.

Book Laser Acceleration of Particles

Download or read book Laser Acceleration of Particles written by Joshi and published by American Institute of Physics. This book was released on 1985 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book First Observation of Laser Driven Particle Acceleration in a Semi Infinite Vacuum Space

Download or read book First Observation of Laser Driven Particle Acceleration in a Semi Infinite Vacuum Space written by J. E. Spencer and published by . This book was released on 2005 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Laser Acceleration in Vacuum with an Open Iris Loaded Structure

Download or read book Laser Acceleration in Vacuum with an Open Iris Loaded Structure written by and published by . This book was released on 1997 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: An open iris-loaded waveguide structure is considered for laser acceleration of highly relativistic particle in vacuum. Complete characterization of eigenmodes are given in analytical form for the structure. In particular acceleration performance of the dominant TM mode is evaluated in detail. Transparent scaling laws are derived, and through which significant advantages over other vacuum laser acceleration schemes are demonstrated. The entire parameter space is searched and it is found that below the laser damage threshold of the structure an acceleration gradient around 1 GV/m can be obtained over a phase slippage length of 10s of cm with TWs laser in the wavelength range from 1 to 10 [mu]m.

Book Critical Issues for Vacuum Laser Acceleration

Download or read book Critical Issues for Vacuum Laser Acceleration written by and published by . This book was released on 2004 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent technological progress in lasers has renewed interest in applying high power lasers to accelerate charged particles. Outstanding gains in efficiency and power, and the first demonstration of optical phase-locking have moved the laser closer to competitive standing with microwave vacuum tubes as power sources for accelerators. We explore some of the questions that will determine the suitability of both low-field (a0 “1) and high-field (a0> 1) acceleration methods, and identify some of the challenges ahead. Possible applications include a laser-driven linear collider and novel, compact particle and radiation sources, each with its own performance requirements.

Book Space Charge Physics for Particle Accelerators

Download or read book Space Charge Physics for Particle Accelerators written by Ingo Hofmann and published by Springer. This book was released on 2017-09-20 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.

Book Efficient Modeling of Plasma Wake Field Acceleration Experiments Using Particle in cell Methods

Download or read book Efficient Modeling of Plasma Wake Field Acceleration Experiments Using Particle in cell Methods written by Weiming An and published by . This book was released on 2013 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no clear path for building a particle accelerator at the energy frontier beyond the Large Hadron Collider (LHC). One option that is receiving attention is to use plasma wave wakefields driven by intense particle beams. Recent experiments conducted at the Stanford Linear Accelerator Center (SLAC) show that accelerating gradients in such wakefields in excess of 50 GeV/m can be sustained over meter scales. Based on this, a linear collider concept of staging one-meter long plasma cells together has been proposed. A facility at SLAC has been built to study the physics in one stage. In this dissertation we describe improvements and enhancements to a highly efficient simulation model for simulating current experiments at SLAC as well as parameters beyond the reach of current experiments. The model is the quasi-static particle-in-cell (PIC) code QuickPIC. A modified set of quasi-static field equations were developed, which reduced the number of predictor corrector iteration loops and an improved source deposit scheme was developed to reduce the parallel communication. These improvements led to a factor of 5 to 8 (depending on the simulation parameters) speedup compared with the previous set of field equations and deposition scheme. Several new modules were also added to QuickPIC, including the multiple field ionization and improved beam and plasma particle diagnostics. We also used QuickPIC to study the optimum plasma density for maximizing the acceleration field for fixed electron beam parameters. QuickPIC simulations were also used to study and design two-bunch PWFA experiments at SLAC including methods for mitigating the ionization-induced beam head erosion. The mitigation methods can enhance the energy gain in two-bunch PWFA experiments at SLAC by a factor of 10 for the same beam parameters. For beam parameters beyond SLAC but perhaps necessary for a future collider, QuickPIC was used to study how the ultra high electric fields of a tightly focused second electron bunch could lead to ion motion, which disrupts the focusing fields on the second bunch. The resulting nonlinearity in the transverse focusing force of the plasma wake will lead to emittance growth. We used QuickPIC to carry out the first fully self-consistent high resolution simulation on the effects of ion motion for PWFA linear collider problems. Preliminary results showed that the plasma-ion-motion-induced emittance growth was limited to less than a factor of 2. In addition to the electron beam driven PWFA, we also study how a short proton beam can excite a large plasma wake. Such short proton beams are currently not experimentally available. We therefore also study how long proton beams such as those at Fermi National Laboratory and CERN may drive a large plasma wake through a self-modulation instability. A linear theory for the self-modulation instability is presented under the wide beam limit. QuickPIC simulations show that the self-modulation of a long proton beam in a plasma may lead to the micro-bunching of the beam and excite a large plasma wake.

Book Laser Driven Electron Acceleration in Vacuum  Gases and Plasmas

Download or read book Laser Driven Electron Acceleration in Vacuum Gases and Plasmas written by and published by . This book was released on 1996 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

Book Laser Wakefield Acceleration

Download or read book Laser Wakefield Acceleration written by and published by . This book was released on 2014 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these "wake-fields", surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than 1/2 milliradian (i.e. 1/2 millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma "bubbles", which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use t ...

Book Elementary Particles   Accelerators and Colliders

Download or read book Elementary Particles Accelerators and Colliders written by Ugo Amaldi and published by Springer. This book was released on 2013-03-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.