EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structural Modification in TiO2 Photoanode for Dye sensitized Solar Cell Applications

Download or read book Structural Modification in TiO2 Photoanode for Dye sensitized Solar Cell Applications written by Zainab Badar Al-Ruqeishiyah and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ion Beam Techniques and Applications

Download or read book Ion Beam Techniques and Applications written by Ishaq Ahmad and published by BoD – Books on Demand. This book was released on 2020-06-10 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wide variety of ion beam techniques are being used in several versatile applications ranging from environmental science, nuclear physics, microdevice fabrication to materials science. In addition, new applications of ion beam techniques across a broad range of disciplines and fields are also being discovered frequently. In this book, the latest research and development on progress in ion beam techniques has been compiled and an overview of ion beam irradiation-induced applications in nanomaterial-focused ion beam applications, ion beam analysis techniques, as well as ion implantation application in cells is provided. Moreover, simulations of ion beam-induced damage to structural materials of nuclear fusion reactors are also presented in this book.

Book Modification of TiO2 Photoanodes for Dye sensitized Solar Cells

Download or read book Modification of TiO2 Photoanodes for Dye sensitized Solar Cells written by Hua Yu and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : With the growing demand of the photovoltaic market, high cost of the traditional silicon-based solar cells has been the biggest barrier for its widespread use of solar energy conversion. New generation solar cells, aiming at the low-cost and high- efficiency photovoltaic devices, have been researched for a couple of decades. Among the new generation solar technologies, dye-sensitized solar cell (DSSC) normally employing a nanoporous TiO2 photoanode draw a quite attention to meet future solar energy market demanding because its realizable low-cost property and high-efficiency achievement. Continuing efforts have been devoted to improve the performance of DSSCs. However, there are still several drawbacks need to be overcome. The major drawbacks mainly focus on the electron recombination and low-efficiency electron transport in the nanoporous TiO2 photoanodes, which significantly limit the practical application of DSSCs. Therefore, the main task of this thesis is to retard the electron recombination and to improve the electron transport efficiency in the nanoporous TiO2 photoanodes for DSSCs through interfacial and structural modification strategies.

Book Electronic and Structural Modification of Titanium Dioxide zinc Oxide Photoanode for Dye sensitized Solar Cells

Download or read book Electronic and Structural Modification of Titanium Dioxide zinc Oxide Photoanode for Dye sensitized Solar Cells written by Aravind Kumar Chandiran and published by . This book was released on 2013 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book TiO2 Nanotube Arrays

Download or read book TiO2 Nanotube Arrays written by Craig A. Grimes and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.

Book Recent Trends in Materials and Devices

Download or read book Recent Trends in Materials and Devices written by Vinod Kumar Jain and published by Springer. This book was released on 2016-10-20 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the International Conference on Recent Trends in Materials and Devices, which was conceived as a major contribution to large-scale efforts to foster Indian research and development in the field in close collaboration with the community of non-resident Indian researchers from all over the world. The research articles collected in this volume - selected from among the submissions for their intrinsic quality and originality, as well as for their potential value for further collaborations - document and report on a wide range of recent and significant results for various applications and scientific developments in the areas of Materials and Devices. The technical sessions covered include photovoltaics and energy storage, semiconductor materials and devices, sensors, smart and polymeric materials, optoelectronics, nanotechnology and nanomaterials, MEMS and NEMS, as well as emerging technologies.

Book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells

Download or read book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2019-10-30 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

Book Structural Properties of Titanium Dioxide Films for Dye sensitized Solar Cells

Download or read book Structural Properties of Titanium Dioxide Films for Dye sensitized Solar Cells written by Tulsi Patel and published by . This book was released on 2014 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells

Download or read book Interfacial Engineering in Functional Materials for Dye Sensitized Solar Cells written by Alagarsamy Pandikumar and published by John Wiley & Sons. This book was released on 2019-10-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

Book Novel Soft Chemistry Synthesis of Titanium Dioxide for Applications in Dye Sensitized Solar Cells and Photocatalysis

Download or read book Novel Soft Chemistry Synthesis of Titanium Dioxide for Applications in Dye Sensitized Solar Cells and Photocatalysis written by Aiat Hegazy and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the high cost of solar cells prevents them being a primary candidate for energy production, great attention has been paid towards them because of the depletion of the conventional energy sources-fossil fuels-and the global warming effect, and the need to provide power to remote communities disconnected from the power grid. To reduce the cost, thin film technologies for silicon solar cells have also been investigated and commercialized, but dye sensitized solar cells (DSSC) have been considered as a promising alternative even for the silicon thin films with efficiency exceeding 10%. Compared with silicon-based photovoltaic devices, DSSCs are quite complex systems that require an intimate interaction among components. Within the last few years, conclusive smart solutions have been provided to improve the efficiency of these cells, with solar efficiency that makes them potential competitors against silicon devices. The most successful systems use titanium oxide as a core material tuned to collect and transmit the electrons generated by the photo-excitation of dye molecules. However, most of the solutions demonstrated so far require a thermal treatment of the TiO2 photoelectrodes at temperatures that preclude using any flexible organic substrate. This treatment prevents development of any roll-to-roll manufacturing process, which would be the only way to achieve cost effective large scale production. In order to overcome this major drawback, a novel synthesis of TiO2 at room temperature is described in the present document. This synthesis leads to 4-6 nm nanocrystalline anatase, the desired phase of titanium oxide for photoactive applications. An intensive study was carried out to explore the properties of these nanoparticles, via a mixture design study designed to analyze the influence of the starting composition on the final TiO2 structure. The influence of a post-synthesis thermal treatment was also explored. This 4 nm nanocrystalline TiO2 exhibits a high specific surface area and a good porosity that fulfills the requirements for an efficient photoanode; a high surface area allows high dye loading, and, hence, increases photocurrent and photo-conversion efficiency. Another important result of this study is the band gap, as it confirmed that nanocrystalline anatase has an indirect band gap and a quantum confinement for a crystal size of less than 10 nm. This result, well-known for bulk materials, had been discussed in some previous publications that claimed the effectiveness of a direct band gap. Following this synthesis and the structural and spectroscopic analyzes carried out in parallel, photocatalytic study was an important tool to further explore the semiconducting properties of this material. Additionally, our material gave very promising results in photocatalytic dye degradation, compared to the commercial products, even if it was not initially synthesized for this application. We assign these performances to the improved crystallinity resulting from thermal activation, without changing the crystal size, and to the ability to optimize the surface. This photocatalytic study gave us insights into the methods that optimize the electronic structure of the titanium oxide. Hence, we decided to thermally activate the nanoparticles before the preparation of films to be inserted into DSSCs. At this stage, as the thermal activation applies to the powder, the resulting material can still be used with flexible substrates. We have successfully integrated these nanoparticles in dye sensitized solar cells. Various organic additives were added to the TiO2 paste used to prepare photoelectrode films, to increase the porosity of the film and have a crack-free film with good attachment to the substrate. We demonstrated that the dye was chemically attached to the TiO2 surface, which led to better electron transport. Different treatment methods (UV and thermal) were applied to the film to cure it from organic additives and improve the electronic connectivity between the particles. When the UV treatment was applied as a single method, i.e. without thermal treatment, the cell performance was lower, but a combination of thermal treatment and UV enhanced this performance. We compared our nanoparticles to the reference material used in most of the studies on DSSC, that is, TiO2 Degussa, with cells prepared the same way. Our nanoparticles revealed higher overall conversion efficiency. As the dye attachment to the TiO2 surface is an important parameter that enhances the cell efficiency, so we checked via ATR-FTIR how the dye attached to the TiO2 surface. In addition, FTIR, UV-Vis, and IV measurements revealed that the amount of dye adsorbed was increased through HCl treatment of the photoelectrode. We also checked the internal resistance of the cell using impedance spectroscopy, and the analysis proved a successful integration of the nanoparticles in dye-sensitized solar cells as there was an increase in both the electron life time and the recombination resistance, and a decrease in the charge transfer resistance compared to the commercial powder.

Book Modification of Physical and Chemical Properties of Titanium Dioxide  TiO2  by Ion Implantation for Dye Sensitized Solar Cells

Download or read book Modification of Physical and Chemical Properties of Titanium Dioxide TiO2 by Ion Implantation for Dye Sensitized Solar Cells written by Hafsa Siddiqui and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, ion implantation is used as a leading technique for doping. Inspite of generating lattice distortions it is preferred over other techniques due to its large range of doses, extremely accurate dose control and low temperature process. This chapter deals with the modification of physical-chemical properties of titanium dioxide (TiO2) through ion implantation method. The TiO2 material is tested in many fields, e.g., nano-catalysts, light harvesting, magnetic data storage and Optics. Various synthesis routes have been reported for the preparation of TiO2 nano-micro structures (particulate solids). Further, implanting these particulate solids revealed anisotropic ferromagnetism at room temperature. On the other hand, noble ion implantation opens up the horizon for fabrication of plasmonic and optical composites. Here in this chapter, TiO2 based photoanodes have been extensively examined for dye sensitized solar cells (DSSC) with metallic and non-metallic ion implantation to realize TiO2 with specific properties.

Book Titanium Dioxide

Download or read book Titanium Dioxide written by Dongfang Yang and published by BoD – Books on Demand. This book was released on 2018-06-27 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.

Book Photocatalysis

    Book Details:
  • Author : Jinlong Zhang
  • Publisher : Springer
  • Release : 2018-10-11
  • ISBN : 9811321132
  • Pages : 414 pages

Download or read book Photocatalysis written by Jinlong Zhang and published by Springer. This book was released on 2018-10-11 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the photocatalytic mechanism, factors affecting photocatalytic activity, design and preparation of different kinds of nanostructured photocatalysts, and their applications in the environmental and energy fields. Further, it illustrates a broad range of modification methods including ion-doping, heterojunction, noble metal deposition, morphological control and sensitizations, which are used to extend the light absorption range of photocatalysts and reduce recombination between electrons and holes. Promising applications include water splitting, contaminant decomposition and photocatalytic reduction of CO2, which are closely related to environmental redemption and new energy development. The book offers an intriguing and useful guide for a broad readership in various fields of catalysis, material sciences, environment and energy.

Book Updates on Titanium Dioxide

Download or read book Updates on Titanium Dioxide written by Bochra Bejaoui and published by BoD – Books on Demand. This book was released on 2023-08-30 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Titanium dioxide (TiO2) has received a lot of attention due to its inexpensive cost, benign nature, and great photocatalytic potential. TiO2 has numerous applications, including in photocatalysts, Li-ion batteries, solar cells, and medical research. However, its performance is unsatisfactory due to a variety of issues, including a wide band gap (3.01 to 3.2 eV) and quick electron–hole pair recombination (1012 to 1011 s). Many efforts have been made to improve the qualities of TiO2, such as structural and dopant changes, which expand its applications. This book focuses on the properties of TiO2-modified nanoparticles, including their synthesis, alterations, and applications.

Book Nanomaterials for Solar Cell Applications

Download or read book Nanomaterials for Solar Cell Applications written by Sabu Thomas and published by Elsevier. This book was released on 2019-06-12 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanomaterials for Solar Cell Applications provides a review of recent developments in the field of nanomaterials based solar cells. It begins with a discussion of the fundamentals of nanomaterials for solar calls, including a discussion of lifecycle assessments and characterization techniques. Next, it reviews various types of solar cells, i.e., Thin film, Metal-oxide, Nanowire, Nanorod and Nanoporous materials, and more. Other topics covered include a review of quantum dot sensitized and perovskite and polymer nanocomposites-based solar cells. This book is an ideal resource for those working in this evolving field of nanomaterials and renewable energy. - Provides a well-organized approach to the use of nanomaterials for solar cell applications - Discusses the synthesis, characterization and applications of traditional and new material - Includes coverage of emerging nanomaterials, such as graphene, graphene-derivatives and perovskites

Book Metal Oxides for Next generation Optoelectronic  Photonic  and Photovoltaic Applications

Download or read book Metal Oxides for Next generation Optoelectronic Photonic and Photovoltaic Applications written by Vijay Kumar and published by Elsevier. This book was released on 2023-09-15 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxides for Next Generation Optoelectronic, Photonic and Photovoltaic Applications focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings. Each chapter includes a comprehensive evaluation of the synthesis and characterization of the most relevant metal oxides nanostructures for each application. In addition, there is a focus on methods to tune the materials’ properties in order to improve devices performance. This book is suitable for researchers and practitioners in academia and industry working in the disciplines of materials science and engineering, chemistry and physics. Metal oxides are widely used in various optoelectronic devices, photonics, display devices, smart windows, sensors, optical components, energy-saving, and harvesting devices. Each application requires materials with their own specific properties. By controlling the particle size, shape, crystal structure, one can tune various properties of metal oxides viz. bandgap, absorption properties, conductivity, which alter the material for the specific application. Includes discussions of synthesis and characterization of metal oxides materials for applications in next-generation optoelectronic, photonic and photovoltaic devices Emphasizes material design strategies of metal oxide nanostructures Focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings