EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Structural and Chemical Analyses of Buffer Layers in Cu In  Ga Se2 Thin film Solar Cells

Download or read book Structural and Chemical Analyses of Buffer Layers in Cu In Ga Se2 Thin film Solar Cells written by Daniel Abou-Ras and published by . This book was released on 2005 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells

Download or read book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells written by Peipei Xin and published by . This book was released on 2017 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. ☐ This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. ☐ First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. ☐ Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. ☐ Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options – CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

Book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells

Download or read book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells written by Zhenhao Zhang and published by KIT Scientific Publishing. This book was released on 2014-10-16 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distribution of the electrostatic potential in and between the materials in Cu(In,Ga)Se2 thin-film solar cells has a major impact on their superior performance. This thesis reported on the nanoscale imaging of the electrostatic potential on untreated cross sections of operating Cu(In,Ga)Se2 solar cells using Kelvin probe force microscopy.

Book The Role of the Heterointerfaces in the Cu In  Ga Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers

Download or read book The Role of the Heterointerfaces in the Cu In Ga Se2 Thin Film Solar Cell with Chemical Bath Deposited Buffer Layers written by Hong-Quang Nguyen and published by . This book was released on 2004 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Characterization Techniques for Thin Film Solar Cells

Download or read book Advanced Characterization Techniques for Thin Film Solar Cells written by Daniel Abou-Ras and published by John Wiley & Sons. This book was released on 2016-07-13 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Book Practical Handbook of Photovoltaics

Download or read book Practical Handbook of Photovoltaics written by Augustin McEvoy and published by Academic Press. This book was released on 2012 with total page 1269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of PV systems.

Book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components

Download or read book Optical Physics of Cu In Ga Se2 Solar Cells and Their Layer Components written by Abedl-Rahman Ibdah and published by . This book was released on 2016 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polycrystalline Cu(In1-xGax)Se2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (e1, e2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (e1, e2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm × 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (e1, e2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.

Book Microstructure of Surface Layers in Cu In  Ga Se2 Thin Films

Download or read book Microstructure of Surface Layers in Cu In Ga Se2 Thin Films written by and published by . This book was released on 2003 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In most Cu(In, Ga)Se2 thin films used for solar cells, there usually exist interfaces lying about 0.1 to 0.2 m below the surfaces. We report on a convergent-beam electron diffraction and energy-dispersive X-ray spectroscopy study of the microstructure and chemical composition of the surface region in Cu(In, Ga)Se2 thin films. We find that the surface region and the bulk are structurally similar, with no ordered defect chalcopyrite structure observed. However, their composition is slightly different, indicating that they can have different point-defect physics. Our results suggest that the subinterfaces and the bulk absorber may form homojunctions.

Book Solar Cell Materials

Download or read book Solar Cell Materials written by Arthur Willoughby and published by John Wiley & Sons. This book was released on 2014-01-13 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

Book New Deposition Process of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book New Deposition Process of Cu In Ga Se2 Thin Films for Solar Cell Applications written by Himal Khatri and published by . This book was released on 2009 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molybdenum (Mo) is currently the most common material used for Cu(In, Ga)Se2 solar cell back contacts. The first objective of this study is to utilize in-situ and ex-situ characterization techniques to investigate the growth, as well as the physical and chemical properties, of Mo thin films deposited by RF magnetron sputtering onto soda-lime glass (SLG) substrates. The effects of the deposition pressure on the nucleation and growth mechanisms that ultimately influence morphology and grain structure have been studied. Correspondence between real time spectroscopic ellipsometry (RTSE), X-ray diffraction (XRD), atomic force microscopy (AFM), and four-point probe resistivity measurements indicate that increasing deposition pressure leads to smaller average grain sizes and higher oxygen content in the Mo thin films. Changes of the material properties were also evaluated by changing RF power. It is observed that higher RF power, results in higher conductivity films. The second and overall objective of this work is to focus on the deposition and characterization of the Cu(In, Ga)Se2 absorber layer using the hybrid co-sputtering and evaporation process, which has potential for commercial PV. Solar cells were completed with a range of elemental compositions in the absorber layer, keeping a constant profile of Ga and varying Cu concentrations. The slightly Cu deficient Cu(In, Ga)Se2 films of band gap ~1.15 eV fabricated by this process consist of a single chalcopyrite phase and device efficiencies up to 12.4% were achieved for the composition ratios (x, y) = (0.30, 0.88). Correspondence between energy dispersive X-ray spectroscopy (EDS), X-ray diffraction, transmission and reflection (T & R), four-point probe resistivity, and current density-voltage (J-V) measurements indicate that increased Cu concentration leads to the incorporation of a secondary phase Cu2-xSe compound in the Cu(In, Ga)Se2 films, which is detrimental to cell performance. The third objective of this work is to evaluate the Cu2-xSe material properties by employing in-situ RTSE, as well as ex-situ SE and various other characterization techniques. SE revealed that the dielectric function spectra of Cu2-xSe evolve with temperature, providing insights into the evolution of transport properties and critical point structures. At room temperature, semi-metallic behavior of Cu2-xSe thin films was revealed by SE and Hall Effect measurements. These characteristics serve as key inputs for optical modeling of complex layer structures of Cu(In, Ga)Se2 films grown by 2- and 3-step processes.

Book Characterization of Microstructural and Chemical Features in Cu In Ga Se S based Thin film Solar Cells

Download or read book Characterization of Microstructural and Chemical Features in Cu In Ga Se S based Thin film Solar Cells written by Ankush R. Halbe and published by . This book was released on 2006 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a sample with a transparent back contact, a 10 nm Mo layer was deposited on ITO (indium tin oxide) before deposition of the CIGS2 (Cu(In,Ga)S2) layer. EFTEM maps indicate that a MoS2 layer does not form for such a Mo/MoS2-ITO back contact. Instead, absorber layer material diffuses through the thin Mo layer onto the ITO forming two layers of CIGS2 on either side of Mo with different compositions.

Book Vacuum Evaporated In2S3 Buffer Layer for Cu In  Ga Se2 Thin film Solar Cell

Download or read book Vacuum Evaporated In2S3 Buffer Layer for Cu In Ga Se2 Thin film Solar Cell written by Rajneesh Verma and published by . This book was released on 2010 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Fifth Pacific Rim International Conference on Advanced Materials and Processing  November 2 5  2004  Beijing  China

Download or read book The Fifth Pacific Rim International Conference on Advanced Materials and Processing November 2 5 2004 Beijing China written by Z.Y. Zhong and published by . This book was released on 2005 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wide Gap Chalcopyrites

    Book Details:
  • Author : Susanne Siebentritt
  • Publisher : Springer Science & Business Media
  • Release : 2006-02-25
  • ISBN : 3540312935
  • Pages : 267 pages

Download or read book Wide Gap Chalcopyrites written by Susanne Siebentritt and published by Springer Science & Business Media. This book was released on 2006-02-25 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.